Non-Abelian supertubes

被引:0
|
作者
José J. Fernández-Melgarejo
Minkyu Park
Masaki Shigemori
机构
[1] Kyoto University,Yukawa Institute for Theoretical Physics
[2] Universidad de Murcia,Departamento de Física
[3] Queen Mary University of London,Centre for Research in String Theory, School of Physics and Astronomy
[4] Kyoto University,Center for Gravitational Physics, Yukawa Institute for Theoretical Physics
关键词
Black Holes in String Theory; D-branes; Spacetime Singularities; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
A supertube is a supersymmetric configuration in string theory which occurs when a pair of branes spontaneously polarizes and generates a new dipole charge extended along a closed curve. The dipole charge of a codimension-2 supertube is characterized by the U-duality monodromy as one goes around the supertube. For multiple codimension-2 supertubes, their monodromies do not commute in general. In this paper, we construct a supersymmetric solution of five-dimensional supergravity that describes two supertubes with such non-Abelian monodromies, in a certain perturbative expansion. In supergravity, the monodromies are realized as the multi-valuedness of the scalar fields, while in higher dimensions they correspond to non-geometric duality twists of the internal space. The supertubes in our solution carry NS5 and 522 dipole charges and exhibit the same monodromy structure as the SU(2) Seiberg-Witten geometry. The perturbative solution has AdS2 × S2 asymptotics and vanishing four-dimensional angular momentum. We argue that this solution represents a microstate of four-dimensional black holes with a finite horizon and that it provides a clue for the gravity realization of a pure-Higgs branch state in the dual quiver quantum mechanics.
引用
收藏
相关论文
共 50 条
  • [11] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [12] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88
  • [13] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [14] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +
  • [15] NON-ABELIAN ORBIFOLDS
    INOUE, K
    SAKAMOTO, M
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 908 - 922
  • [16] Non-Abelian eikonals
    Fried, HM
    Gabellini, Y
    PHYSICAL REVIEW D, 1997, 55 (04): : 2430 - 2440
  • [17] On non-Abelian holonomies
    Alfaro, J
    Morales-Técotl, HA
    Reyes, M
    Urrutia, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (48): : 12097 - 12107
  • [18] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [19] Non-Abelian firewall
    Singleton, Douglas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (14):
  • [20] NON-ABELIAN ZILCH
    DESER, S
    NICOLAI, H
    PHYSICS LETTERS B, 1981, 98 (1-2) : 45 - 47