On the decisional Diffie–Hellman problem for class group actions on oriented elliptic curves

被引:0
|
作者
Wouter Castryck
Marc Houben
Frederik Vercauteren
Benjamin Wesolowski
机构
[1] imec-COSIC,Dept. Mathematics: Algebra and Geometry
[2] KU Leuven,Dept. Mathematics
[3] Ghent University,undefined
[4] Dept. Mathematics,undefined
[5] KU Leuven,undefined
[6] Leiden Univ,undefined
[7] Univ. Bordeaux,undefined
[8] CNRS,undefined
[9] Bordeaux INP,undefined
[10] IMB,undefined
[11] UMR 5251,undefined
[12] INRIA,undefined
[13] IMB,undefined
[14] UMR 5251,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} in an unknown ideal class [a]∈cl(O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\mathfrak {a}}] \in {{\,\textrm{cl}\,}}({\mathcal {O}})$$\end{document} that connects two given O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document}-oriented elliptic curves (E,ι)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E, \iota )$$\end{document} and (E′,ι′)=[a](E,ι)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E', \iota ') = [{\mathfrak {a}}](E, \iota )$$\end{document}. When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often somewhat faster than a recent approach due to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead. The main implication of our work is that it breaks the decisional Diffie–Hellman problem for practically all oriented elliptic curves that are acted upon by an even-order class group. It can also be used to better handle the worst cases in Wesolowski’s recent reduction from the vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading to a method that always works in sub-exponential time.
引用
收藏
相关论文
共 34 条
  • [21] Group Security Authentication and Key Agreement Protocol Built by Elliptic Curve Diffie Hellman Key Exchange for LTE Military Grade Communication
    Moussa, Karim H.
    El-Sakka, Ahmed H.
    Shaaban, Shawky
    Kheirallah, Hassan Nadir
    IEEE ACCESS, 2022, 10 : 80352 - 80364
  • [22] Flexible group key management and secure data transmission in mobile device communications using elliptic curve Diffie-Hellman cryptographic system
    Lin, Hua-Yi
    Hsieh, Meng-Yen
    Li, Kuan-Ching
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2016, 12 (01) : 47 - 52
  • [23] An Application of the Arithmetic of Elliptic Curves to the Class Number Problem for Quadratic Fields
    Iizuka, Yoshichika
    Konomi, Yutaka
    Nakano, Shin
    TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (01) : 33 - 47
  • [24] Formalized Class Group Computations and Integral Points on Mordell Elliptic Curves
    Baanen, Anne
    Best, Alex J.
    Coppola, Nirvana
    Dahmen, Sander R.
    PROCEEDINGS OF THE 12TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, CPP 2023, 2023, : 47 - 62
  • [25] A short group signature DAA scheme based on l-modified one more strong diffie-hellman problem assumption
    Zhou, Yan-Zhou
    Zhang, Huan-Guo
    Li, Li-Xin
    Song, Yang
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2010, 36 (05): : 601 - 604
  • [26] The Steinitz class of the Mordell-Weil group of some CM elliptic curves
    Dummit, DS
    Miller, WL
    JOURNAL OF NUMBER THEORY, 1996, 56 (01) : 52 - 78
  • [27] GRAPHS OF CURVES ON INFINITE-TYPE SURFACES WITH MAPPING CLASS GROUP ACTIONS
    Durham, Matthew Gentry
    Fanoni, Federica
    Vlamis, Nicholas G.
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (06) : 2581 - 2612
  • [28] A new two-round dynamic authenticated contributory group key agreement protocol using elliptic curve Diffie–Hellman with privacy preserving public key infrastructure
    VANKAMAMIDI S NARESH
    NISTALA V E S MURTHY
    Sadhana, 2015, 40 : 2143 - 2161
  • [29] A new two-round dynamic authenticated contributory group key agreement protocol using elliptic curve Diffie-Hellman with privacy preserving public key infrastructure
    Naresh, Vankamamidi S.
    Murthy, Nistala V. E. S.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2015, 40 (07): : 2143 - 2161
  • [30] CONSTRUCTING PUBLIC- KEY CRYPTOGRAPHIC SCHEMES BASED ON CLASS GROUP ACTION ON A SET OF ISOGENOUS ELLIPTIC CURVES
    Stolbunov, Anton
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (02) : 215 - 235