On the decisional Diffie–Hellman problem for class group actions on oriented elliptic curves

被引:0
|
作者
Wouter Castryck
Marc Houben
Frederik Vercauteren
Benjamin Wesolowski
机构
[1] imec-COSIC,Dept. Mathematics: Algebra and Geometry
[2] KU Leuven,Dept. Mathematics
[3] Ghent University,undefined
[4] Dept. Mathematics,undefined
[5] KU Leuven,undefined
[6] Leiden Univ,undefined
[7] Univ. Bordeaux,undefined
[8] CNRS,undefined
[9] Bordeaux INP,undefined
[10] IMB,undefined
[11] UMR 5251,undefined
[12] INRIA,undefined
[13] IMB,undefined
[14] UMR 5251,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document} in an unknown ideal class [a]∈cl(O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\mathfrak {a}}] \in {{\,\textrm{cl}\,}}({\mathcal {O}})$$\end{document} that connects two given O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}$$\end{document}-oriented elliptic curves (E,ι)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E, \iota )$$\end{document} and (E′,ι′)=[a](E,ι)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E', \iota ') = [{\mathfrak {a}}](E, \iota )$$\end{document}. When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often somewhat faster than a recent approach due to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead. The main implication of our work is that it breaks the decisional Diffie–Hellman problem for practically all oriented elliptic curves that are acted upon by an even-order class group. It can also be used to better handle the worst cases in Wesolowski’s recent reduction from the vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading to a method that always works in sub-exponential time.
引用
收藏
相关论文
共 34 条
  • [1] On the decisional Diffie-Hellman problem for class group actions on oriented elliptic curves
    Castryck, Wouter
    Houben, Marc
    Vercauteren, Frederik
    Wesolowski, Benjamin
    RESEARCH IN NUMBER THEORY, 2022, 8 (04)
  • [2] Breaking the Decisional Diffie–Hellman Problem for Class Group Actions Using Genus Theory: Extended Version
    Wouter Castryck
    Jana Sotáková
    Frederik Vercauteren
    Journal of Cryptology, 2022, 35
  • [3] Breaking the Decisional Diffie-Hellman Problem for Class Group Actions Using Genus Theory: Extended Version
    Castryck, Wouter
    Sotakova, Jana
    Vercauteren, Frederik
    JOURNAL OF CRYPTOLOGY, 2022, 35 (04)
  • [4] On the Static Diffie-Hellman Problem on Elliptic Curves over Extension Fields
    Granger, Robert
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2010, 2010, 6477 : 283 - 302
  • [6] Towards the Equivalence of Diffie-Hellman Problem and Discrete Logarithm Problem for Important Elliptic Curves Used in Practice
    Kushwaha, Prabhat
    2017 ISEA ASIA SECURITY AND PRIVACY CONFERENCE (ISEASP 2017), 2017, : 9 - 12
  • [7] Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem
    Zhang, Fangguo
    PROVABLE SECURITY, PROVSEC 2017, 2017, 10592 : 219 - 235
  • [8] Tight Time-Space Tradeoffs for the Decisional Diffie-Hellman Problem
    Akshima
    Besselman, Tyler
    Guo, Siyao
    Xie, Zhiye
    Ye, Yuping
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1739 - 1749
  • [9] A Secure Proxy Signature Scheme Based on the Hardness of the Decisional Diffie-Hellman Problem
    Popescu, Constantin
    STUDIES IN INFORMATICS AND CONTROL, 2012, 21 (03): : 293 - 302
  • [10] Quantum Money from Class Group Actions on Elliptic Curves
    Montgomery, Hart
    Sharif, Shahed
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT IX, 2025, 15492 : 33 - 64