The monotonicity of the p-torsional rigidity in convex domains

被引:0
|
作者
Cristian Enache
Mihai Mihăilescu
Denisa Stancu-Dumitru
机构
[1] American University of Sharjah,Department of Mathematics and Statistics
[2] University of Craiova,Department of Mathematics
[3] “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy,Department of Mathematics and Computer Sciences
[4] University Politehnica of Bucharest,undefined
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
-Laplacian; -torsional rigidity; Distance function to the boundary; 35Q74; 47J05; 47J20; 49J40; 49S05;
D O I
暂无
中图分类号
学科分类号
摘要
For any bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document} (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}), with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, and any real number p>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1,$$\end{document} we denote by up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{p}$$\end{document} the p-torsion function on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, that is the solution of the torsional creep problemΔpu=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u=-1$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=0$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, where Δpu:=div(∇up-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u:=div( \left| \nabla u\right| ^{p-2}\nabla u) $$\end{document} is the p-Laplace operator. Our aim is to investigate the monotonicity with respect to p for the p-torsional rigidity on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, defined as TpΩ:=∫Ωupdx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{p}\left( \Omega \right) :=\int _{\Omega }u_{p}dx$$\end{document}. More precisely, we show that there exist two constants D1∈12,e-1N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1\in \left[ \frac{1}{2},e^{\frac{-1}{N+1}}\right] $$\end{document} and D2∈1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_2\in \left[ 1,N\right] $$\end{document} such that for each bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document} with |∂Ω||Ω|≤D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}\le D_1$$\end{document} the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is decreasing on 1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\infty \right) $$\end{document}, while for each bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}, with |∂Ω||Ω|≥D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}\ge D_2$$\end{document}, the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is increasing on 1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\infty \right) $$\end{document}. Moreover, for each real number s∈(D1,D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (D_1,D_2)$$\end{document} there exists a bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}, with |∂Ω||Ω|=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}=s$$\end{document}, such that the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is not monotone on (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}.
引用
收藏
页码:419 / 431
页数:12
相关论文
共 50 条
  • [31] ON MONOTONICITY OF GRADIENT OF CONVEX FUNCTION
    MINTY, GJ
    PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (01) : 243 - &
  • [32] Dilatation monotonicity and convex order
    Svindland, Gregor
    MATHEMATICS AND FINANCIAL ECONOMICS, 2014, 8 (03) : 241 - 247
  • [33] Torsional rigidity of scoliosis constructs
    Wood, KB
    Wentorf, FA
    Ogilvie, JW
    Kim, KT
    SPINE, 2000, 25 (15) : 1893 - 1898
  • [34] TORSIONAL RIGIDITY OF ANISOTROPIC PRISMS
    JONES, EE
    JOURNAL OF ENGINEERING MATHEMATICS, 1975, 9 (01) : 39 - 51
  • [35] ON AN EXTREMAL PROPERTY OF THE TORSIONAL RIGIDITY
    DIAZ, JB
    WEINSTEIN, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (03) : 281 - 282
  • [36] A Steklov version of the torsional rigidity
    Brasco, L.
    Gonzalez, M.
    Ispizua, M.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (07)
  • [37] Monotonicity of positive solutions for fractional p -systems in unbounded Lipschitz domains
    Ma, Lingwei
    Zhang, Zhenqiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [38] TORSIONAL RIGIDITY INCREASES BY SYMMETRIZATION
    POLYA, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (11) : 1124 - 1124
  • [39] The Torsional Rigidity of a Rectangular Prism
    Tsai, Cho-Liang
    Wang, Chih-Hsing
    Hwang, Sun-Fa
    Chen, Wei-Tong
    Cheng, Chin-Yi
    MATHEMATICS, 2022, 10 (13)
  • [40] The optimal problems for torsional rigidity
    Yang, Jin
    Wei, Zhenzhen
    AIMS MATHEMATICS, 2021, 6 (05): : 4597 - 4613