Theory and implementation of coalitional analysis in cooperative decision making

被引:0
|
作者
Haiyan Xu
D. Marc Kilgour
Keith W. Hipel
Edward A. McBean
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Economics and Management
[2] University of Guelph,College of Physical and Engineering Science
[3] Wilfrid Laurier University,Department of Mathematics
[4] University of Waterloo,Department of Systems Design Engineering
来源
Theory and Decision | 2014年 / 76卷
关键词
Coalitional stability; Algebraical expression; Decision maker; Graph model; Cooperative decision;
D O I
暂无
中图分类号
学科分类号
摘要
Stability definitions for describing human behavior under conflict when coalitions may form are generalized within the Graph Model for Conflict Resolution and algebraic formulations of these definitions are provided to allow computer implementation. The more general definitions of coalitional stabilities relax the assumption of transitive graphs capturing movements under the control of decision makers, either independently or cooperatively, and allow the convenient expansion to the case of coalitions of the four basic individual stabilities consisting of Nash stability, general metarationality, symmetric metarationality, and sequential stability. To permit the various coalitional stabilities to be efficiently calculated and conveniently encoded within a decision support system, algebraic expressions for the coalitional stabilities are provided in this research. Furthermore, a range of the theorems establish the mathematical credibility of employing the innovative algebraic approach to conflict resolution when coalitions are present. Finally, a conflict over the proposed exportation of bulk water from Lake Gisborne within the Canadian Province of Newfoundland and Labrador is modelled and analyzed to illustrate the practical application of the different coalitional stabilities and the strategic insights they provide.
引用
收藏
页码:147 / 171
页数:24
相关论文
共 50 条
  • [31] Robust coalitional implementation
    Guo, Huiyi
    Yannelis, Nicholas C.
    GAMES AND ECONOMIC BEHAVIOR, 2022, 132 : 553 - 575
  • [32] Implementation of Stochastic Analysis in Corporate Decision-Making Models
    Lu, Jin-Biao
    Liu, Zhi-Jiang
    Tulenty, Dmitry
    Tsvetkova, Liudmila
    Kot, Sebastian
    MATHEMATICS, 2021, 9 (09)
  • [33] A cooperative game theory based coalitional agent negotiation model in network service
    Bian, Zheng-Ai
    Luo, Jun-Zhou
    COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN III, 2007, 4402 : 447 - +
  • [34] GROUP DECISION-MAKING IN THE BUYING CENTER - A POLITICAL-COALITIONAL PERSPECTIVE
    MUMMALANENI, V
    ADVANCES IN CONSUMER RESEARCH, 1984, 11 : 159 - 164
  • [35] Directed graph-based multi-agent coalitional decision making
    Yu, Xiaohan
    Xu, Zeshui
    KNOWLEDGE-BASED SYSTEMS, 2012, 35 : 271 - 278
  • [36] Consensus group decision making based on coalitional Nash-bargaining game
    Meng, Fanyong
    Tang, Jie
    Li, Xiaochao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [37] Directed graph-based multi-agent coalitional decision making
    Yu, Xiaohan
    Xu, Zeshui
    Knowledge-Based Systems, 2012, 35 : 271 - 278
  • [38] Leadership style, decision context, and the poliheuristic theory of decision making - An experimental analysis
    Keller, Jonathan W.
    Yang, Yi Edward
    JOURNAL OF CONFLICT RESOLUTION, 2008, 52 (05) : 687 - 712
  • [39] THE RECIPROCAL RELATIONSHIP BETWEN IMPLEMENTATION THEORY AND PROGRAM THEORY IN ASSISTING PROGRAM DESIGN AND DECISION-MAKING
    Renger, Ralph
    Bartel, Gabriele
    Foltysova, Jirinia
    CANADIAN JOURNAL OF PROGRAM EVALUATION, 2013, 28 (01) : 27 - 41