There are many types of non-metallic TiN-based inclusions observed in GCr15 bearing steel, including single-particle TiN, multi-particle polymerized TiN, and complex inclusions like TiN-MnS, TiN-MgO-MgAl2O4 (TiN-MgO-MA), and TiN-MgAl2O4-MnS (TiN-MA-MnS). Thermodynamic calculations suggest that single-particle TiN precipitates dominate the mushy zone of GCr15 bearing steel. Kinetic calculations regarding TiN growth suggest that the final size of the single-particle TiN ranges between 1 and 6 μm in the initial concentration range of [pct Ti] = 0.0060 to 0.0079 and [pct N] = 0.0049 to 0.0070, at 1620 to 1640 K and a local cooling rate of 0.5 to 10 K/s. The multi-particle polymerized TiN are formed by single TiN particles in three stages: single-particle TiN inclusions approach each other drawn by the cavity bridge force (CBF), local active angles consolidate, and neck region sintering occurs. Based on the thermodynamic calculations of TiN, MnS, and MgO precipitation, the formation behaviors of complex inclusions of TiN-MnS, TiN-MgO-MA, and TiN-MA-MnS were investigated.