Deep person re-identification in UAV images

被引:0
|
作者
Aleksei Grigorev
Zhihong Tian
Seungmin Rho
Jianxin Xiong
Shaohui Liu
Feng Jiang
机构
[1] Harbin Institute of Technology,School of Computer Science and Technology
[2] Guangzhou University,Cyberspace Institute of Advanced Technology
[3] Sejong University,College of Software and Convergence Technology
[4] Beijing Institute of Technology,School of Computer
关键词
Re-identification; Deep learning; DRHIT01; Triplet loss;
D O I
暂无
中图分类号
学科分类号
摘要
The person re-identification is one of the most significant problems in computer vision and surveillance systems. The recent success of deep convolutional neural networks in image classification has inspired researchers to investigate the application of deep learning to the person re-identification. However, the huge amount of research on this problem considers classical settings, where pedestrians are captured by static surveillance cameras, although there is a growing demand for analyzing images and videos taken by drones. In this paper, we aim at filling this gap and provide insights on the person re-identification from drones. To our knowledge, it is the first attempt to tackle this problem under such constraints. We present the person re-identification dataset, named DRone HIT (DRHIT01), which is collected by using a drone. It contains 101 unique pedestrians, which are annotated with their identities. Each pedestrian has about 500 images. We propose to use a combination of triplet and large-margin Gaussian mixture (L-GM) loss to tackle the drone-based person re-identification problem. The proposed network equipped with multi-branch design, channel group learning, and combination of loss functions is evaluated on the DRHIT01 dataset. Besides, transfer learning from the most popular person re-identification datasets is evaluated. Experiment results demonstrate the importance of transfer learning and show that the proposed model outperforms the classic deep learning approach.
引用
收藏
相关论文
共 50 条
  • [41] Person Re-identification with Deep Features and Transfer Learning
    Wang, Shengke
    Wu, Shan
    Duan, Lianghua
    Yu, Changyin
    Sun, Yujuan
    Dong, Junyu
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 704 - 707
  • [42] Research of Person Re-identification Based on Deep Learning
    Wang, Haoying
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2150 - 2157
  • [43] Recurrent Deep Attention Network for Person Re-Identification
    Wang, Changhao
    Zhou, Jun
    Duan, Xianfei
    Zhang, Guanwen
    Zhou, Wei
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4276 - 4281
  • [44] PoolNet deep feature based person re-identification
    J. Stella Janci Rani
    M. Gethsiyal Augasta
    Multimedia Tools and Applications, 2023, 82 : 24967 - 24989
  • [45] Deep Gabor convolution network for person re-identification
    Yuan, Yuan
    Zhang, Jian'an
    Wang, Qi
    NEUROCOMPUTING, 2020, 378 : 387 - 398
  • [46] Deep learning with particle filter for person re-identification
    Gwangmin Choe
    Chunhwa Choe
    Tianjiang Wang
    Hyoson So
    Cholman Nam
    Caihong Yuan
    Multimedia Tools and Applications, 2019, 78 : 6607 - 6636
  • [47] An Improved Deep Learning Architecture for Person Re-Identification
    Ahmed, Ejaz
    Jones, Michael
    Marks, Tim K.
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 3908 - 3916
  • [48] Deep Cosine Metric Learning for Person Re-Identification
    Wojke, Nicolai
    Bewley, Alex
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 748 - 756
  • [49] DEEP LEARNING PROTOTYPE DOMAINS FOR PERSON RE-IDENTIFICATION
    Schumann, Arne
    Gong, Shaogang
    Schuchert, Tobias
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1767 - 1771
  • [50] Similarity learning with deep CRF for person re-identification
    Xiang, Jun
    Huang, Ziyuan
    Jiang, Xiaoping
    Hou, Jianhua
    PATTERN RECOGNITION, 2023, 135