Submanifolds with parallel weighted mean curvature vector in the Gaussian space

被引:0
|
作者
Danilo F. da Silva
Eraldo A. Lima Jr
Henrique F. de Lima
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
[2] Universidade Federal de Campina Grande,Departamento de Matemática
来源
Archiv der Mathematik | 2022年 / 118卷
关键词
Drift Laplacian; Bakry–Émery–Ricci tensor; Gaussian space; Weighted mean curvature vector; Self-shrinkers; Primary 53C42 Secondary 53E10;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a Nishikawa type maximum principle for the drift Laplacian and, under a suitable boundedness of the second fundamental form, we apply it to prove that the hyperplanes are the only complete n-dimensional submanifolds immersed with either parallel weighted mean curvature vector, for codimension p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document}, or constant weighted mean curvature, for codimension p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document}, in the (n+p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+p)$$\end{document}-dimensional Gaussian space Gn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}^{n+p}$$\end{document}, which corresponds to the Euclidean space Rn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+p}$$\end{document} endowed with the Gaussian probability measure dμ=e-|x|2/4dσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\mu =e^{-|x|^2/4}d\sigma $$\end{document}, where dσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\sigma $$\end{document} is the standard Lebesgue measure of Rn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+p}$$\end{document}. Furthermore, we also use a maximum principle at infinity to get additional rigidity results, as well as a nonexistence result related to nonminimal submanifolds immersed with parallel weighted mean curvature vector in Gn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}^{n+p}$$\end{document}.
引用
收藏
页码:663 / 673
页数:10
相关论文
共 50 条