Submanifolds with parallel weighted mean curvature vector in the Gaussian space

被引:0
|
作者
Danilo F. da Silva
Eraldo A. Lima Jr
Henrique F. de Lima
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
[2] Universidade Federal de Campina Grande,Departamento de Matemática
来源
Archiv der Mathematik | 2022年 / 118卷
关键词
Drift Laplacian; Bakry–Émery–Ricci tensor; Gaussian space; Weighted mean curvature vector; Self-shrinkers; Primary 53C42 Secondary 53E10;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a Nishikawa type maximum principle for the drift Laplacian and, under a suitable boundedness of the second fundamental form, we apply it to prove that the hyperplanes are the only complete n-dimensional submanifolds immersed with either parallel weighted mean curvature vector, for codimension p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document}, or constant weighted mean curvature, for codimension p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document}, in the (n+p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+p)$$\end{document}-dimensional Gaussian space Gn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}^{n+p}$$\end{document}, which corresponds to the Euclidean space Rn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+p}$$\end{document} endowed with the Gaussian probability measure dμ=e-|x|2/4dσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\mu =e^{-|x|^2/4}d\sigma $$\end{document}, where dσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\sigma $$\end{document} is the standard Lebesgue measure of Rn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+p}$$\end{document}. Furthermore, we also use a maximum principle at infinity to get additional rigidity results, as well as a nonexistence result related to nonminimal submanifolds immersed with parallel weighted mean curvature vector in Gn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}^{n+p}$$\end{document}.
引用
收藏
页码:663 / 673
页数:10
相关论文
共 50 条
  • [1] Submanifolds with parallel weighted mean curvature vector in the Gaussian space
    da Silva, Danilo F.
    Lima, Eraldo A., Jr.
    de Lima, Henrique F.
    ARCHIV DER MATHEMATIK, 2022, 118 (06) : 663 - 673
  • [2] On the rigidity of spacelike submanifolds with parallel Gaussian mean curvature vector
    Barboza, W. F. C.
    de Lima, H. F.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) : 323 - 329
  • [3] On the rigidity of spacelike submanifolds with parallel Gaussian mean curvature vector
    W. F. C. Barboza
    H. F. de Lima
    Acta Mathematica Hungarica, 2023, 170 : 323 - 329
  • [4] Submanifolds with parallel Gaussian mean curvature vector in Euclidean spaces
    Wang, Huijuan
    Xu, Hongwei
    Zhao, Entao
    MANUSCRIPTA MATHEMATICA, 2020, 161 (3-4) : 439 - 465
  • [5] Submanifolds with parallel Gaussian mean curvature vector in Euclidean spaces
    Huijuan Wang
    Hongwei Xu
    Entao Zhao
    manuscripta mathematica, 2020, 161 : 439 - 465
  • [6] Spacelike submanifolds with parallel Gaussian mean curvature vector: rigidity and nonexistence
    da Silva, Danilo F.
    Lima, Eraldo A., Jr.
    de Lima, Henrique F.
    MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 451 - 462
  • [7] Spacelike submanifolds with parallel Gaussian mean curvature vector: rigidity and nonexistence
    Danilo F. da Silva
    Eraldo A. Lima
    Henrique F. de Lima
    manuscripta mathematica, 2024, 173 : 451 - 462
  • [8] SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR
    沈一兵
    A Monthly Journal of Science, 1983, (05) : 716 - 716
  • [9] Submanifolds with Parallel Mean Curvature Vector
    Zhou Kouhua(Dept.of Math
    数学研究与评论, 1993, (03) : 326 - 326
  • [10] ON SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR
    Araujo, Kellcio O.
    Tenenblat, Keti
    KODAI MATHEMATICAL JOURNAL, 2009, 32 (01) : 59 - 76