Quantum cosmology with dynamical vacuum in a minimal-length scenario

被引:0
|
作者
M. F. Gusson
A. Oakes O. Gonçalves
R. G. Furtado
J. C. Fabris
J. A. Nogueira
机构
[1] Universidade Federal do Espírito Santo-Ufes,
[2] Universidade Federal do Espírito Santo-Ufes,undefined
[3] Instituto Federal Baiano,undefined
[4] National Research Nuclear University MEPhI,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider effects of the dynamical vacuum in quantum cosmology in presence of a minimum length introduced by the GUP (generalized uncertainty principle) related to the modified commutation relation [X^,P^]:=iħ1-βP^2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\hat{X}},{\hat{P}}] := \frac{i\hbar }{ 1 - \beta {\hat{P}}^2 }$$\end{document}. We determine the wave function of the Universe ψqp(ξ,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi _{qp}(\xi ,t)$$\end{document}, which is solution of the modified Wheeler–DeWitt equation in the representation of the quasi-position space, in the limit where the scale factor of the Universe is small. Although ψqp(ξ,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _{qp}(\xi ,t)$$\end{document} is a physically acceptable state it is not a realizable state of the Universe because ψqp(ξ,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi _{qp}(\xi ,t)$$\end{document} has infinite norm, as in the ordinary case with no minimal length.
引用
收藏
相关论文
共 50 条
  • [21] Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity induced minimal-length quantum mechanics
    Bosso, Pasquale
    Petruzziello, Luciano
    Wagner, Fabian
    Illuminati, Fabrizio
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [22] An infinite square-well potential as a limiting case of a square-well potential in a minimal-length scenario
    Goncalves, A. Oakes O.
    Gusson, M. F.
    Dilem, B. B.
    Furtado, R. G.
    Francisco, R. O.
    Fabris, J. C.
    Nogueira, J. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (14):
  • [23] Quantum phase transitions of the Dirac oscillator in a minimal length scenario
    Menculini, L.
    Panella, O.
    Roy, P.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [24] QUANTUM VACUUM COSMOLOGY
    JONES, JE
    ANNALS OF PHYSICS, 1976, 101 (02) : 380 - 393
  • [25] Hydrogen-atom spectrum under a minimal-length hypothesis
    Benczik, S
    Chang, LN
    Minic, D
    Takeuchi, T
    PHYSICAL REVIEW A, 2005, 72 (01)
  • [26] Physicochemical Properties of Monolayers of a Gemini Surfactant with a Minimal-Length Spacer
    Singh, Srikant Kumar
    Yeboah, Alfred
    Bu, Wei
    Sun, Pan
    Paige, Matthew F.
    LANGMUIR, 2022, 38 (51) : 16004 - 16013
  • [27] Quantum cosmology of a dynamical Lambda
    Magueijo, Joao
    Zlosnik, Tom
    Speziale, Simone
    PHYSICAL REVIEW D, 2020, 102 (06):
  • [28] COSMOLOGY WITH MINIMAL LENGTH UNCERTAINTY RELATIONS
    Vakili, Babak
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (07): : 1059 - 1071
  • [29] Effective Scenario of Loop Quantum Cosmology
    Ding, You
    Ma, Yongge
    Yang, Jinsong
    PHYSICAL REVIEW LETTERS, 2009, 102 (05)
  • [30] IMAGE AND BOUNDARY SEGMENTATION VIA MINIMAL-LENGTH ENCODING ON THE CONNECTION MACHINE
    LECLERC, YG
    IMAGE UNDERSTANDING WORKSHOP /, 1989, : 1056 - 1069