Impact of normalization and filtering on linkage analysis of gene expression data

被引:0
|
作者
Joseph Beyene
Pingzhao Hu
Elena Parkhomenko
David Tritchler
机构
[1] University of Toronto,Department of Public Health Sciences
[2] The Hospital for Sick Children Research Institute,Program in Population Health Sciences
[3] The Hospital for Sick Children Research Institute,Program in Genetics and Genomic Biology
[4] Ontario Cancer Institute,Division of Epidemiology and Statistics
关键词
Heritability Estimate; Gene Expression Measurement; Genetic Analysis Workshop; Expression Quantitative Trait Locus; Gene Expression Intensity;
D O I
10.1186/1753-6561-1-S1-S150
中图分类号
学科分类号
摘要
Using the Problem 1 data set made available for Genetic Analysis Workshop 15, we assessed sensitivity of linkage results to a correlation-based feature extraction method as well as to different normalization procedures applied to the raw Affymetrix gene expression microarray data. The impact of these procedures on heritability estimates and on expression quantitative trait loci are investigated. The filtering algorithm we propose in this paper ranks genes based on the total absolute correlation of each gene with all other genes on the array and has the potential to extract features that may play role in functional pathways and gene networks. Our results showed that the normalization and filtering algorithms can have a profound influence on genetic analysis of gene expression data.
引用
收藏
相关论文
共 50 条
  • [1] Comparison of normalization and models for the analysis of gene expression data
    Rodriguez-Zas, S. L.
    Band, M. R.
    Everts, R. E.
    Southey, B. R.
    Liu, Z. L.
    Lewin, H. A.
    [J]. JOURNAL OF DAIRY SCIENCE, 2004, 87 : 377 - 377
  • [2] Comparison of normalization and models for the analysis of gene expression data
    Rodriguez-Zas, S. L.
    Band, M. R.
    Everts, R. E.
    Southey, B. R.
    Liu, Z. L.
    Lewin, H. A.
    [J]. POULTRY SCIENCE, 2004, 83 : 377 - 377
  • [3] Comparison of normalization and models for the analysis of gene expression data
    Rodriguez-Zas, S. L.
    Band, M. R.
    Everts, R. E.
    Southey, B. R.
    Liu, Z. L.
    Lewin, H. A.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2004, 82 : 377 - 377
  • [4] Impact of DNA microarray data transformation on gene expression analysis - comparison of two normalization methods
    Schmidt, Marcin T.
    Handschuh, Luiza
    Zyprych, Joanna
    Szabelska, Alicja
    Olejnik-Schmidt, Agnieszka K.
    Siatkowski, Idzi
    Figlerowicz, Marek
    [J]. ACTA BIOCHIMICA POLONICA, 2011, 58 (04) : 573 - 580
  • [5] Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data
    Knowlton, N
    Dozmorov, IM
    Centola, M
    [J]. BIOINFORMATICS, 2004, 20 (18) : 3687 - 3690
  • [6] Linkage analysis using principal components of gene expression data
    Elizabeth J Atkinson
    Brooke L Fridley
    Ellen L Goode
    Shannon K McDonnell
    Wen Liu-Mares
    Kari G Rabe
    Zhifu Sun
    Susan L Slager
    Mariza de Andrade
    [J]. BMC Proceedings, 1 (Suppl 1)
  • [7] Binary analysis and optimization-based normalization of gene expression data
    Shmulevich, I
    Zhang, W
    [J]. BIOINFORMATICS, 2002, 18 (04) : 555 - 565
  • [8] Normalization strategy of microarray gene expression data
    伍亚舟
    张玲
    黄明辉
    杨梦苏
    易东
    [J]. Military Medical Research, 2007, (04) : 195 - 200
  • [9] SNOMAD (Standardization and NOrmalization of MicroArray Data): web-accessible gene expression data analysis
    Colantuoni, C
    Henry, G
    Zeger, S
    Pevsner, J
    [J]. BIOINFORMATICS, 2002, 18 (11) : 1540 - 1541
  • [10] Normalization of microarray expression data using within-pedigree pool and its effect on linkage analysis
    Yoonhee Kim
    Betty Q Doan
    Priya Duggal
    Joan E Bailey-Wilson
    [J]. BMC Proceedings, 1 (Suppl 1)