Homotopical Morita theory for corings

被引:0
|
作者
Alexander Berglund
Kathryn Hess
机构
[1] Stockholm University,Department of Mathematics
[2] École Polytechnique Fédérale de Lausanne,SV BMI UPHESS
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A coring (A,C) consists of an algebra A in a symmetric monoidal category and a coalgebra C in the monoidal category of A-bimodules. Corings and their comodules arise naturally in the study of Hopf–Galois extensions and descent theory, as well as in the study of Hopf algebroids. In this paper, we address the question of when two corings (A,C) and (B,D) in a symmetric monoidal model category V are homotopically Morita equivalent, i.e., when their respective categories of comodules VAC and VBD are Quillen equivalent. As an illustration of the general theory, we examine homotopical Morita theory for corings in the category of chain complexes over a commutative ring.
引用
收藏
页码:239 / 287
页数:48
相关论文
共 50 条
  • [41] Homotopical theory of periodic points of periodic homeomorphisms on closed surfaces
    Marzantowicz, Waclaw
    Zhao, Xuezhi
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (15) : 2527 - 2536
  • [42] Descent Theory and Morita Theory for Ultrametric Banach Modules
    Francis Borceux
    Françoise Grandjean
    Applied Categorical Structures, 1998, 6 : 105 - 116
  • [43] On Galois corings
    Wisbauer, R
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 309 - 320
  • [44] Group corings
    Caenepeel, S.
    Janssen, K.
    Wang, S. H.
    APPLIED CATEGORICAL STRUCTURES, 2008, 16 (1-2) : 65 - 96
  • [45] ON CORINGS AND COMODULES
    Porst, Hans-E.
    ARCHIVUM MATHEMATICUM, 2006, 42 (04): : 419 - 425
  • [46] MORITA'S THEORY FOR THE SYMPLECTIC GROUPS
    Qi, Zhi
    Yang, Chang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (08) : 2115 - 2137
  • [47] RELATIVE HERMITIAN MORITA THEORY .1. MORITA EQUIVALENCES OF ALGEBRAS WITH INVOLUTION
    HERNANDEZ, CMM
    SANCHEZ, MVR
    VERSCHOREN, A
    JOURNAL OF ALGEBRA, 1993, 162 (01) : 146 - 167
  • [48] Morita homotopy theory of C*-categories
    Dell'Ambrogio, Ivo
    Tabuada, Goncalo
    JOURNAL OF ALGEBRA, 2014, 398 : 162 - 199
  • [49] Descent theory and Morita theory for ultrametric Banach modules
    Borceux, F
    Grandjean, F
    APPLIED CATEGORICAL STRUCTURES, 1998, 6 (01) : 105 - 116
  • [50] The Morita Theory of Quantum Graph Isomorphisms
    Musto, Benjamin
    Reutter, David
    Verdon, Dominic
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (02) : 797 - 845