Around quantum ergodicity

被引:0
|
作者
Semyon Dyatlov
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
关键词
Quantum ergodicity; Quantum chaos; Eigenfunctions; 58J51;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss Shnirelman’s Quantum Ergodicity Theorem, giving an outline of a proof and an overview of some of the recent developments in mathematical Quantum Chaos.
引用
收藏
页码:11 / 26
页数:15
相关论文
共 50 条
  • [41] Quantum and classical ergodicity of spinning particles
    Bolte, J
    Glaser, R
    Keppeler, S
    ANNALS OF PHYSICS, 2001, 293 (01) : 1 - 14
  • [42] On Quantum Ergodicity for Linear Maps of the Torus
    Pär Kurlberg
    Zeév Rudnick
    Communications in Mathematical Physics, 2001, 222 : 201 - 227
  • [43] Quantum unique ergodicity for parabolic maps
    J. Marklof
    Z. Rudnick
    Geometric & Functional Analysis GAFA, 2000, 10 : 1554 - 1578
  • [44] QUANTUM CHAOS - LOCALIZATION VS ERGODICITY
    CHIRIKOV, BV
    IZRAILEV, FM
    SHEPELYANSKY, DL
    PHYSICA D, 1988, 33 (1-3): : 77 - 88
  • [45] Quantum ergodicity for a class of mixed systems
    Galkowski, Jeffrey
    JOURNAL OF SPECTRAL THEORY, 2014, 4 (01) : 65 - 85
  • [46] Ergodicity of quantum trajectory detection records
    Cresser, JD
    DIRECTIONS IN QUANTUM OPTICS, 2001, 561 : 358 - 369
  • [47] Quantum ergodicity at a finite energy level
    Tate, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (04) : 867 - 885
  • [48] Quantum Unique Ergodicity for Maps on the Torus
    Lior Rosenzweig
    Annales Henri Poincaré, 2006, 7 : 447 - 469
  • [49] Quantum ergodicity for electrons in two dimensions
    Shepelyansky, Dima L.
    Song, Pil Hun
    Annalen der Physik (Leipzig), 1999, 8 (07): : 665 - 673
  • [50] Upper bounds on the rate of quantum ergodicity
    Schubert, Roman
    ANNALES HENRI POINCARE, 2006, 7 (06): : 1085 - 1098