Singular Type Trudinger-Moser Inequalities with Logarithmic Weights and the Existence of Extremals

被引:1
|
作者
Zhao, Huimin [1 ]
Guo, Yongqiang [1 ]
Shen, Yansheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Singular Trudinger-Moser inequalities; logarithmic weights; extremal functions; UNBOUNDED-DOMAINS; ADAMS INEQUALITY; CONSTANTS; EQUATION;
D O I
10.1007/s00009-023-02582-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
n this paper, we study the existence of extremals for thefollowing singular critical Trudinger-Moser inequality with logarithmicweights:supu is an element of W1,n0,r(B,omega beta),& Vert;u & Vert;omega beta <= 1 integral Bexp(alpha n,beta,sigma|u|n(n-1)(1-beta))|x|sigma dx<infinity, where B is the unit ball inRn,beta is an element of[0,1),sigma is an element of[0,n),alpha n,beta,sigma=(n-sigma)[omega 1n-1n-1(1-beta)]11-beta,W1,n0,r(B, omega beta) denotes the radial weighted Sobolevspace with the norm & Vert;u & Vert;omega beta=(integral B|del u|n omega beta(x)dx)1n,omega beta(x)=(loge|x|)beta(n-1).Moreover, form>0, we establish a singular supercritical Trudinger-Moser inequality with logarithmic weightssupu is an element of W1,n0,r(B,omega beta),& Vert;u & Vert;omega beta <= 1 integral Bexp((alpha n,beta,sigma+|x|m)|u|n(n-1)(1-beta))|x|sigma dx<infinity,and prove the existence of its extremal functions
引用
收藏
页数:15
相关论文
共 50 条