Non-Abelian statistics and topological quantum information processing in 1D wire networks

被引:0
|
作者
Alicea J. [1 ]
Oreg Y. [2 ]
Refael G. [3 ]
Von Oppen F. [4 ]
Fisher M.P.A. [3 ,5 ]
机构
[1] Department of Physics and Astronomy, University of California, Irvine
[2] Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot
[3] Department of Physics, California Institute of Technology, Pasadena
[4] Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin
[5] Department of Physics, University of California, Santa Barbara
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys1915
中图分类号
学科分类号
摘要
The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum information non-locally. Here we establish that a key operation-braiding of non-Abelian anyons-can be implemented using one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental set-ups that enable probing of the Majorana fusion rules and the efficient exchange of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that benefits from physical transparency and experimental feasibility.
引用
收藏
页码:412 / 417
页数:5
相关论文
共 50 条
  • [11] Non-Abelian anyons and topological quantum computation
    Nayak, Chetan
    Simon, Steven H.
    Stern, Ady
    Freedman, Michael
    Das Sarma, Sankar
    REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1083 - 1159
  • [12] Topological Quantum Field Theory on non-Abelian gerbes
    Kalkkinen, Jussi
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 505 - 530
  • [13] Error Correction for Non-Abelian Topological Quantum Computation
    Wootton, James R.
    Burri, Jan
    Iblisdir, Sofyan
    Loss, Daniel
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [14] Universal Quantum Computation with a Non-Abelian Topological Memory
    Wootton, James R.
    Lahtinen, Ville
    Pachos, Jiannis K.
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2009, 5905 : 56 - 65
  • [15] NON-ABELIAN STATISTICS IN THE FRACTIONAL QUANTUM HALL STATES
    WEN, XG
    PHYSICAL REVIEW LETTERS, 1991, 66 (06) : 802 - 805
  • [16] Fractional Quantum Hall States with Non-Abelian Statistics
    Moeller, G.
    Wojs, A.
    Cooper, N. R.
    ACTA PHYSICA POLONICA A, 2009, 116 (05) : 847 - 848
  • [17] Exclusion statistics for non-Abelian quantum Hall states
    Schoutens, K
    PHYSICAL REVIEW LETTERS, 1998, 81 (09) : 1929 - 1932
  • [18] Introduction to topological quantum computation with non-Abelian anyons
    Field, Bernard
    Simula, Tapio
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (04):
  • [19] Ab initio simulation of non-Abelian braiding statistics in topological superconductors
    Sanno, Takumi
    Miyazaki, Shunsuke
    Mizushima, Takeshi
    Fujimoto, Satoshi
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [20] Detecting non-Abelian statistics of topological states on a chain of superconducting circuits
    Cao, Jun-Yi
    Liu, Jia
    Shao, L. B.
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2020, 101 (02)