Ground State Solutions for Asymptotically Periodic Kirchhoff-Type Equations with Asymptotically Cubic or Super-cubic Nonlinearities

被引:0
|
作者
Sitong Chen
Xianhua Tang
机构
[1] Central South University,School of Mathematics and Statistics
来源
关键词
Kirchhoff-type equation; Nehari-type ground state solution; asymptotically periodic; asymptotically cubic or super-cubic growth; 35J20; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the following Kirchhoff-type equation -a+b∫R3|∇u|2dx▵u+V(x)u=f(x,u),x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\left( a+b\int _{\mathbb {R}^3}|\nabla {u}|^2\mathrm {d}x\right) \triangle u+V(x)u=f(x, u), \quad x\in \mathbb {R}^{3}, \end{aligned}$$\end{document}where V∈C(R3,(0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in \mathcal {C}(\mathbb {R}^{3}, (0,\infty ))$$\end{document}, f∈C(R3×R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {C}({\mathbb {R}}^{3}\times \mathbb {R}, \mathbb {R})$$\end{document}, V(x) and f(x, t) are periodic or asymptotically periodic in x. Using weaker assumptions lim|t|→∞∫0tf(x,s)ds|t|3=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^3}=\infty $$\end{document} uniformly in x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {R}^3$$\end{document} and f(x,τ)τ3-f(x,tτ)(tτ)3sign(1-t)+θ0V(x)|1-t2|(tτ)2≥0,∀x∈R3,t>0,τ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\left[ \frac{f(x,\tau )}{\tau ^3}-\frac{f(x,t\tau )}{(t\tau )^3} \right] \mathrm {sign}(1-t) +\theta _0V(x)\frac{|1-t^2|}{(t\tau )^2}\ge 0, \quad \\&\quad \forall x\in \mathbb {R}^3,\ t>0, \ \tau \ne 0 \end{aligned}$$\end{document}with a constant θ0∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _0\in (0,1)$$\end{document}, instead of the common assumption lim|t|→∞∫0tf(x,s)ds|t|4=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{|t|\rightarrow \infty }\frac{\int _0^tf(x, s)\mathrm {d}s}{|t|^4}=\infty $$\end{document} uniformly in x∈R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathbb {R}^3$$\end{document} and the usual Nehari-type monotonic condition on f(x,t)/|t|3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x,t)/|t|^3$$\end{document}, we establish the existence of Nehari-type ground state solutions of the above problem, which generalizes and improves the recent results of Qin et al. (Comput Math Appl 71:1524–1536, 2016) and Zhang and Zhang (J Math Anal Appl 423:1671–1692, 2015). In particular, our results unify asymptotically cubic and super-cubic nonlinearities.
引用
收藏
相关论文
共 50 条