The ring of an outer von Neumann frame in modular lattices

被引:0
|
作者
Gábor Czédli
Benedek Skublics
机构
[1] University of Szeged,
[2] Bolyai Institute,undefined
来源
Algebra universalis | 2010年 / 64卷
关键词
06C05; lattice; modularity; von Neumann ; -frame;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following theorem. Let (a1, . . . , am, c12, . . . , c1m) be a spanning von Neumann m-frame of a modular lattice L, and let (u1, . . . , un, v12, . . . , v1n) be a spanning von Neumann n-frame of the interval [0, a1]. Assume that either m ≥ 4, or L is Arguesian and m ≥ 3. Let R* denote the coordinate ring of (a1, . . . , am, c12, . . . , c1m). If n ≥ 2, then there is a ring S* such that R* is isomorphic to the ring of all n × n matrices over S*. If n ≥ 4 or L is Arguesian and n ≥ 3, then we can choose S* as the coordinate ring of (u1, . . . , un, v12, . . . , v1n).
引用
收藏
页码:187 / 202
页数:15
相关论文
共 50 条
  • [21] von Neumann lattices in finite-dimensional Hilbert spaces
    Revzen, M.
    Khanna, F. C.
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [22] ON THE EQUATIONAL THEORY OF PROJECTION LATTICES OF FINITE VON NEUMANN FACTORS
    Herrmann, Christian
    JOURNAL OF SYMBOLIC LOGIC, 2010, 75 (03) : 1102 - 1110
  • [23] Lattice isomorphisms between projection lattices of von Neumann algebras
    Mori, Michiya
    FORUM OF MATHEMATICS SIGMA, 2020, 8
  • [24] Automorphisms of Spectral Lattices of Positive Contractions on von Neumann Algebras
    Turilova, E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (04) : 355 - 359
  • [25] A note concerning the modular valued von Neumann interaction operator
    Parks, A. D.
    Spence, S. E.
    Farinholt, J. M.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (01) : 101 - 105
  • [26] A note concerning the modular valued von Neumann interaction operator
    A. D. Parks
    S. E. Spence
    J. M. Farinholt
    Quantum Studies: Mathematics and Foundations, 2019, 6 : 101 - 105
  • [27] MODULAR THEORY FOR THE VON NEUMANN ALGEBRAS OF LOCAL QUANTUM PHYSICS
    Guido, Daniele
    ASPECTS OF OPERATOR ALGEBRAS AND APPLICATIONS, 2011, 534 : 97 - 120
  • [28] Modular Intersections of von Neumann Algebras in Quantum Field Theory
    Hans-Werner Wiesbrock
    Communications in Mathematical Physics, 1998, 193 : 269 - 285
  • [29] Modular intersections of von neumann algebras in quantum field theory
    Wiesbrock, HW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (02) : 269 - 285
  • [30] Ring isomorphisms of Murray-von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (05)