fixed point property;
nonexpansive mapping;
Abelian Banach algebra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A Banach space X is said to have the fixed point property if for each nonexpansive mapping T:E→E on a bounded closed convex subset E of X has a fixed point. We show that each infinite dimensional Abelian complex Banach algebra X satisfying: (i) property (A) defined in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010), (ii) ∥x∥≤∥y∥ for each x,y∈X such that |τ(x)|≤|τ(y)| for each τ∈Ω(X), (iii) inf{r(x):x∈X,∥x∥=1}>0 does not have the fixed point property. This result is a generalization of Theorem 4.3 in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010).
机构:
Taif Univ, Fac Sci, Math Dept, Box 888, El Taif 5700, El Hawiyah, Saudi ArabiaTaif Univ, Fac Sci, Math Dept, Box 888, El Taif 5700, El Hawiyah, Saudi Arabia
El-Sayed Ahmed, A.
Kamal, Alaa
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Fac Sci, Math Dept, Box 888, El Taif 5700, El Hawiyah, Saudi ArabiaTaif Univ, Fac Sci, Math Dept, Box 888, El Taif 5700, El Hawiyah, Saudi Arabia
机构:
Yancheng Teachers Univ, Sch Math Sci, Yancheng 224051, Jiangsu, Peoples R ChinaYancheng Teachers Univ, Sch Math Sci, Yancheng 224051, Jiangsu, Peoples R China