Coalescence of Andreev Bound States on the Surface of a Chiral Topological Semimetal

被引:0
|
作者
V. D. Esin
Yu. S. Barash
A. V. Timonina
N. N. Kolesnikov
E. V. Deviatov
机构
[1] Institute of Solid State Physics,
[2] Russian Academy of Sciences,undefined
来源
JETP Letters | 2021年 / 113卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We experimentally investigate the magnetic field dependence of Andreev transport through a region of proximity-induced superconductivity in the CoSi topological chiral semimetal. With increasing magnetic field parallel to the CoSi surface, the sharp subgap peaks, associated with Andreev bound states, move together to nearly-zero bias position, while there is only monotonic peaks suppression for normal to the surface fields. The zero-bias \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dV{\text{/}}dI$$\end{document} resistance value is perfectly stable with changing the in-plane magnetic field. As the effects are qualitatively similar for In and Nb superconducting leads, they reflect the properties of a proximized CoSi surface. The Andreev states coalescence and stability of the zero-bias \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dV{\text{/}}dI$$\end{document} value with increasing in-plane magnetic field are interpreted as the joined effect of the strong spin–orbit coupling and the Zeeman interaction, known for proximized semiconductor nanowires. We associate the observed magnetic field anisotropy with the recently predicted in-plane polarized spin texture of the Fermi arcs surface states.
引用
收藏
页码:662 / 669
页数:7
相关论文
共 50 条
  • [21] Fingerprint of topological Andreev bound states in phase-dependent heat transport
    Sothmann, Bjoern
    Hankiewicz, Ewelina M.
    PHYSICAL REVIEW B, 2016, 94 (08)
  • [22] Distinguishing Majorana and Andreev bound states in a topological superconducting nanowire with a potential barrier
    Feng, Yuan
    Ren, Jun-Tong
    Ke, Sha-Sha
    Lu, Hai-Feng
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 141
  • [23] Suppressed Andreev reflection and helical Andreev bound states in triplet superconductor three-dimensional topological insulator
    Khezerlou, M.
    Goudarzi, H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (04):
  • [24] Andreev bound states and their signatures
    Sauls, J. A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2125):
  • [25] Topological surface states in strained Dirac semimetal thin films
    Arribi, Pablo Villar
    Zhu, Jian-Xin
    Schumann, Timo
    Stemmer, Susanne
    Burkov, Anton A.
    Heinonen, Olle
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [26] Probing image potential states on the surface of the topological semimetal antimony
    Ge, Jian-Feng
    Zhang, Haimei
    He, Yang
    Zhu, Zhihuai
    Yam, Yau Chuen
    Chen, Pengcheng
    Hoffman, Jennifer E.
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [27] Majorana Fermions and Exotic Surface Andreev Bound States in Topological Superconductors: Application to CuxBi2Se3
    Hsieh, Timothy H.
    Fu, Liang
    PHYSICAL REVIEW LETTERS, 2012, 108 (10)
  • [28] Signature of Fermi arc surface states in Andreev reflection at the WTe2 Weyl semimetal surface
    Kononov, A.
    Shvetsov, O. O.
    Egorov, S. V.
    Timonina, A. V.
    Kolesnikov, N. N.
    Deviatov, E. V.
    EPL, 2018, 122 (02)
  • [29] Double Andreev reflections at surface states of the topological insulators with hexagonal warping
    Zhu, Chang-Yong
    Zheng, Shi-Han
    Duan, Hou-Jian
    Deng, Ming-Xun
    Wang, Rui-Qiang
    FRONTIERS OF PHYSICS, 2020, 15 (02)
  • [30] Double Andreev reflections at surface states of the topological insulators with hexagonal warping
    Chang-Yong Zhu
    Shi-Han Zheng
    Hou-Jian Duan
    Ming-Xun Deng
    Rui-Qiang Wang
    Frontiers of Physics, 2020, 15