Global Attractors for the Three-Dimensional Tropical Climate Model with Damping Terms

被引:0
|
作者
Rongyan Mao
Hui Liu
Fahe Miao
Jie Xin
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Shandong Agricultural University,College of Information Science and Engineering
[3] Shandong Youth University of Political Science,School of Information Engineering
关键词
Global attractor; Tropical climate model; Damping terms; 35B40; 35B41; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the 3D tropical climate model with damping terms in the equation of u, v and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, respectively. Firstly, we get some uniform estimates of strong solution. Secondly, we derive the result of the continuity of the semigroup {S(t)}t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S(t)\}_{t\ge 0}$$\end{document} in case of 4≤α,β<5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\le \alpha ,\beta <5$$\end{document} and 135<γ<5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{13}{5}<\gamma <5$$\end{document} via some usual inequalities. Finally, the system (1.1) is shown to possess an (V,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {V}},{\mathbb {V}})$$\end{document}-global attractor and an (V,H2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {V}},{\textbf{H}}^{2})$$\end{document}-global attractor.
引用
收藏
相关论文
共 50 条
  • [31] On Existence of Attractors in Some Three-Dimensional Systems
    N. V. Nikitina
    International Applied Mechanics, 2019, 55 : 95 - 102
  • [32] On Discrete Homoclinic Attractors of Three-Dimensional Diffeomorphisms
    A. S. Gonchenko
    S. V. Gonchenko
    Lobachevskii Journal of Mathematics, 2021, 42 : 3352 - 3364
  • [33] On Existence of Attractors in Some Three-Dimensional Systems
    Nikitina, N. V.
    INTERNATIONAL APPLIED MECHANICS, 2019, 55 (01) : 95 - 102
  • [34] On Shilnikov attractors of three-dimensional flows and maps
    Bakhanova, Yu, V
    Gonchenko, S., V
    Gonchenko, A. S.
    Kazakov, A. O.
    Samylina, E. A.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (9-12) : 1184 - 1201
  • [35] On Existence of Attractors in Dissipative Three-Dimensional Systems
    N. V. Nikitina
    International Applied Mechanics, 2019, 55 : 562 - 574
  • [36] On Discrete Homoclinic Attractors of Three-Dimensional Diffeomorphisms
    Gonchenko, A. S.
    Gonchenko, S., V
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (14) : 3352 - 3364
  • [37] On Existence of Attractors in Dissipative Three-Dimensional Systems
    Nikitina, N., V
    INTERNATIONAL APPLIED MECHANICS, 2019, 55 (05) : 562 - 574
  • [38] On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors
    S. V. Gonchenko
    L. P. Shilnikov
    D. V. Turaev
    Regular and Chaotic Dynamics, 2009, 14
  • [39] On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors
    Gonchenko, S. V.
    Shilnikov, L. P.
    Turaev, D. V.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01): : 137 - 147
  • [40] A simplified three-dimensional model for Martian climate studies
    Haberle, RM
    Houben, H
    Barnes, JR
    Young, RE
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1997, 102 (E4) : 9051 - 9067