A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration

被引:0
|
作者
Fei Xu
Hehu Xie
Manting Xie
Meiling Yue
机构
[1] Beijing University of Technology,Beijing Institute for Scientific and Engineering Computing, Faculty of Science
[2] Chinese Academy of Sciences,LSEC, ICMSEC, Academy of Mathematics and Systems Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
[4] Tianjin University,Center for Applied Mathematics
[5] Beijing Technology and Business University,School of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2021年 / 61卷
关键词
BEC; GPE; Nonlinear eigenvalue problem; Multigrid method; Finite element method; 65N30; 65N25; 65L15; 65B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new kind of multigrid method is proposed for the ground state solution of Bose–Einstein condensates based on Newton iteration scheme. Instead of treating eigenvalue λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and eigenvector u separately, we regard the eigenpair (λ,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , u)$$\end{document} as one element in the composite space R×H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} \times H_0^1(\varOmega )$$\end{document} and then Newton iteration step is adopted for the nonlinear problem. Thus in this multigrid scheme, the main computation is to solve a linear discrete boundary value problem in every refined space, which can improve the overall efficiency for the simulation of Bose–Einstein condensations.
引用
收藏
页码:645 / 663
页数:18
相关论文
共 50 条
  • [1] A multigrid method for the ground state solution of Bose-Einstein condensates based on Newton iteration
    Xu, Fei
    Xie, Hehu
    Xie, Manting
    Yue, Meiling
    BIT NUMERICAL MATHEMATICS, 2021, 61 (02) : 645 - 663
  • [2] A Multigrid Method for Ground State Solution of Bose-Einstein Condensates
    Xie, Hehu
    Xie, Manting
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (03) : 648 - 662
  • [3] AN EFFICIENT MULTIGRID METHOD FOR GROUND STATE SOLUTION OF BOSE-EINSTEIN CONDENSATES
    Zhang, Ning
    Xu, Fei
    Xie, Hehu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) : 789 - 803
  • [4] A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates
    Xinming Wu
    Zaiwen Wen
    Weizhu Bao
    Journal of Scientific Computing, 2017, 73 : 303 - 329
  • [5] A Regularized Newton Method for Computing Ground States of Bose-Einstein Condensates
    Wu, Xinming
    Wen, Zaiwen
    Bao, Weizhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 303 - 329
  • [6] Computable Error Estimates for Ground State Solution of Bose–Einstein Condensates
    Hehu Xie
    Manting Xie
    Journal of Scientific Computing, 2019, 81 : 1072 - 1087
  • [7] NEWTON-BASED ALTERNATING METHODS FOR THE GROUND STATE OF A CLASS OF MULTICOMPONENT BOSE--EINSTEIN CONDENSATES
    Huang, Pengfei
    Yang, Qingzhi
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (03) : 3136 - 3162
  • [8] On ground state of spinor Bose–Einstein condensates
    Daomin Cao
    I-Liang Chern
    Jun-Cheng Wei
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 427 - 445
  • [9] A hybrid discontinuous Galerkin method for computing the ground state solution of Bose-Einstein condensates
    Farhat, Charbel
    Toivanen, Jari
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (14) : 4709 - 4722
  • [10] A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates
    Xu, Fei
    Huang, Qiumei
    Wang, Min
    Ma, Hongkun
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 385