A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces

被引:0
|
作者
Cajo J. F. Ter Braak
机构
[1] Wageningen University and Research Centre,Biometris
来源
Statistics and Computing | 2006年 / 16卷
关键词
Block updating; Evolutionary Monte Carlo; Metropolis algorithm; Population Markov Chain Monte Carlo; Simulated Annealing; Simulated Tempering; Theophylline Kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carlo (MCMC) simulation. This paper integrates the essential ideas of DE and MCMC, resulting in Differential Evolution Markov Chain (DE-MC). DE-MC is a population MCMC algorithm, in which multiple chains are run in parallel. DE-MC solves an important problem in MCMC, namely that of choosing an appropriate scale and orientation for the jumping distribution. In DE-MC the jumps are simply a fixed multiple of the differences of two random parameter vectors that are currently in the population. The selection process of DE-MC works via the usual Metropolis ratio which defines the probability with which a proposal is accepted. In tests with known uncertainty distributions, the efficiency of DE-MC with respect to random walk Metropolis with optimal multivariate Normal jumps ranged from 68% for small population sizes to 100% for large population sizes and even to 500% for the 97.5% point of a variable from a 50-dimensional Student distribution. Two Bayesian examples illustrate the potential of DE-MC in practice. DE-MC is shown to facilitate multidimensional updates in a multi-chain “Metropolis-within-Gibbs” sampling approach. The advantage of DE-MC over conventional MCMC are simplicity, speed of calculation and convergence, even for nearly collinear parameters and multimodal densities.
引用
收藏
页码:239 / 249
页数:10
相关论文
共 50 条
  • [1] A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces
    Ter Braak, Cajo J. F.
    [J]. STATISTICS AND COMPUTING, 2006, 16 (03) : 239 - 249
  • [2] A Differential Evolution Markov Chain Monte Carlo Algorithm for Bayesian Model Updating
    Sherri, M.
    Boulkaibet, I
    Marwala, T.
    Friswell, M., I
    [J]. SPECIAL TOPICS IN STRUCTURAL DYNAMICS, VOL 5, 2019, : 115 - 125
  • [3] A Markov chain Monte Carlo algorithm for Bayesian policy search
    Aghaei, Vahid Tavakol
    Onat, Ahmet
    Yildirim, Sinan
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (01): : 438 - 455
  • [4] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    B Mathew
    A M Bauer
    P Koistinen
    T C Reetz
    J Léon
    M J Sillanpää
    [J]. Heredity, 2012, 109 : 235 - 245
  • [5] Application of inhomogeneous Markov Chain Monte Carlo to a Genetic Algorithm
    Li, Jianxun
    Su, Yancong
    Ren, Gang
    Lyu, Lanlan
    Munehisa, Tomo
    [J]. PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND ENGINEERING (IEEE-ICICE 2017), 2017, : 488 - 491
  • [6] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    Mathew, B.
    Bauer, A. M.
    Koistinen, P.
    Reetz, T. C.
    Leon, J.
    Sillanpaa, M. J.
    [J]. HEREDITY, 2012, 109 (04) : 235 - 245
  • [7] A Markov chain Monte Carlo algorithm for Bayesian dynamic signature verification
    Muramatsu, Daigo
    Kondo, Mitsuru
    Sasaki, Masahiro
    Tachibana, Satoshi
    Matsumoto, Takashi
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2006, 1 (01) : 22 - 34
  • [8] Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo
    Moura, Carlos H. R.
    Viegas, Bruno M.
    Tavares, Maria R. M.
    Macedo, Emanuel N.
    Estumano, Diego C.
    Quaresma, Joao N. N.
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 890 - 901
  • [9] Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo
    Liu, Ying
    Li, Chunguang
    [J]. INFORMATION SCIENCES, 2016, 326 : 334 - 349
  • [10] Markov Chain, Monte Carlo global search and integration for Bayesian, GPS, parameter estimation
    Progri, Ilir
    Bromberg, Matthew
    Wang, Jinling
    [J]. Navigation, Journal of the Institute of Navigation, 2009, 56 (03): : 195 - 204