Close-to-equilibrium regularity for reaction–diffusion systems

被引:0
|
作者
Bao Quoc Tang
机构
[1] University of Graz,Institute for Mathematics and Scientific Computing
来源
关键词
Reaction–diffusion systems; Close-to-equilibrium regularity; Chemical reaction networks; Complex balanced condition; 35K57; 35B40; 35Q92; 80A30; 80A32;
D O I
暂无
中图分类号
学科分类号
摘要
The close-to-equilibrium regularity of solutions to a class of reaction–diffusion systems is investigated. The considered systems typically arise from chemical reaction networks and satisfy a complex balanced condition. Under some restrictions on spatial dimensions (d≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 4$$\end{document}) and order of nonlinearities (μ=1+4/d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = 1 + 4/d $$\end{document}), we show that if the initial data are close to a complex balanced equilibrium in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm, then classical solutions are shown global and converging exponentially to equilibrium in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-norm. Possible extensions to higher dimensions and order of nonlinearities are also discussed. The results of this paper improve the recent work (Cáceres and Cañizo in Nonlinear Anal TMA 159:62–84, 2017).
引用
收藏
页码:845 / 869
页数:24
相关论文
共 50 条
  • [31] Replacement of barite by a (Ba,Ra)SO4 solid solution at close-to-equilibrium conditions: A combined experimental and theoretical study
    Brandt, F.
    Curti, E.
    Klinkenberg, M.
    Rozov, K.
    Bosbach, D.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 155 : 1 - 15
  • [32] Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction-diffusion systems
    Fellner, Klemens
    Bao Quoc Tang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [33] Asymptotic behavior of equilibrium states of reaction-diffusion systems with mass conservation
    Chern, Jann-Long
    Morita, Yoshihisa
    Shieh, Tien-Tsan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) : 550 - 574
  • [34] REGULARITY OF PULLBACK ATTRACTORS FOR NON-AUTONOMOUS STOCHASTIC COUPLED REACTION-DIFFUSION SYSTEMS
    Yin, Jinyan
    Li, Yangrong
    Gu, Anhui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (03): : 884 - 898
  • [35] CONVERGENCE TO EQUILIBRIUM IN A REACTION DIFFUSION SYSTEM
    BATES, PW
    BROWN, KJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (03) : 227 - 235
  • [36] Everywhere regularity of certain nonlinear diffusion systems
    Maxim Trokhimtchouk
    Calculus of Variations and Partial Differential Equations, 2010, 37 : 407 - 422
  • [37] Everywhere regularity of certain nonlinear diffusion systems
    Trokhimtchouk, Maxim
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) : 407 - 422
  • [38] Regularity of solutions to a class of cross diffusion systems
    Le, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1929 - 1942
  • [39] The regularity of general parabolic systems with degenerate diffusion
    Boegelein, Verena
    Duzaar, Frank
    Mingione, Giuseppe
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 221 (1041) : 1 - 143
  • [40] Regularity of Global Attractor for the Reaction-Diffusion Equation
    Luo, Hong
    ABSTRACT AND APPLIED ANALYSIS, 2012,