On Definability of the Equality in Classes of Algebras with an Equivalence Relation

被引:0
|
作者
Pilar Dellunde I Clavé
机构
[1] Universitat Autonoma de Barcelona,Area de Logica, Edifici B
关键词
equivalential logics; algebraic logic; model theory;
D O I
10.1023/A:1005237627378
中图分类号
学科分类号
摘要
We present a finitary regularly algebraizable logic not finitely equivalential, for every similarity type. We associate to each of these logics a class of algebras with an equivalence relation, with the property that in this class, the identity is atomatically definable but not finitely atomatically definable.
引用
收藏
页码:345 / 353
页数:8
相关论文
共 50 条
  • [21] Frame Definability for Classes of Trees in the μ-calculus
    Fontaine, Gaelle
    Place, Thomas
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2010, 2010, 6281 : 381 - +
  • [22] Temporal Definability of Regular Model Classes
    Wang S.-X.
    Ma M.-H.
    Chen W.
    Deng H.-W.
    Deng, Hui-Wen (huiwend@swu.edu.cn), 1600, Chinese Academy of Sciences (28): : 1070 - 1079
  • [23] Full Satisfaction Classes, Definability, and Automorphisms
    Wcislo, Bartosz
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2022, 63 (02) : 143 - 163
  • [24] Existential definability of modal frame classes
    Perkov, Tin
    Mikec, Luka
    MATHEMATICAL LOGIC QUARTERLY, 2020, 66 (03) : 316 - 325
  • [25] LAMBDA-DEFINABILITY ON FREE ALGEBRAS
    ZAIONC, M
    ANNALS OF PURE AND APPLIED LOGIC, 1991, 51 (03) : 279 - 300
  • [26] Lattices of equivalence relations closed under the operations of relation algebras
    Jeremy F. Alm
    John W. Snow
    Algebra universalis, 2014, 71 : 187 - 190
  • [27] Equivalence relation on differential quasi-Batalin-Vilkovisky algebras
    Bangoura, Momo
    AFRIKA MATEMATIKA, 2016, 27 (5-6) : 1079 - 1090
  • [28] Lattices of equivalence relations closed under the operations of relation algebras
    Alm, Jeremy F.
    Snow, John W.
    ALGEBRA UNIVERSALIS, 2014, 71 (02) : 187 - 190
  • [29] Quantifier Free Definability on Infinite Algebras
    Khoussainov, Bakh
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 730 - 738
  • [30] LATTICE DEFINABILITY OF SEMISIMPLE JORDAN ALGEBRAS
    ANQUELA, JA
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (05) : 1409 - 1427