Influence of cerium treatment on inclusion modification and as-cast microstructure of high-strength low-alloy steel

被引:0
|
作者
Ru-ming Geng
Jing Li
Cheng-bin Shi
机构
[1] University of Science and Technology Beijing,State Key Laboratory of Advanced Metallurgy
关键词
Ce treatment; Non-metallic inclusion; As-cast microstructure; In situ observation; Disregistry theory;
D O I
暂无
中图分类号
学科分类号
摘要
The influence of cerium treatment on the inclusion evolution and as-cast microstructure of high-strength low-alloy steel was investigated. Properties including the inclusions characteristics, element distribution, and the in situ solidification were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and high-temperature confocal laser scanning microscopy, respectively. The results indicated that, after the addition of Ce, the Al2O3 inclusions evolved to form Ce2O2S and CeAlO3 inclusions, which exhibited a decrease in size alongside corresponding increase in their number density. The equiaxed grain ratio exhibited by the as-cast microstructure increased significantly upon the addition of Ce, while a reduction in the segregation and a corresponding increase in the homogeneity of the carbon distribution within the as-cast microstructure were also achieved. The results of the in situ observation of the solidification suggested that the addition of Ce significantly reduced the solidification temperature range, thus reducing the carbon segregation. The nucleation effect imparted by Al2O3, Ce2O2S, and CeAlO3 on the δ-Fe formation was discussed in the context of the disregistry theory, which revealed that the formation of a large number of fine Ce2O2S inclusions promoted δ-Fe formation via heterogeneous nucleation.
引用
收藏
页码:1659 / 1668
页数:9
相关论文
共 50 条
  • [31] MICROSTRUCTURE OF A QUENCHED AND TEMPERED CU-BEARING HIGH-STRENGTH LOW-ALLOY STEEL
    MIGLIN, MT
    HIRTH, JP
    ROSENFIELD, AR
    CLARK, WAT
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (05): : 791 - 798
  • [32] The influence of Cr on the microstructure and electrochemical behavior of high strength low-alloy steel
    Wang Dan
    Zhang Shujian
    Zhong Qingdong
    MATERIALS RESEARCH EXPRESS, 2020, 7 (06)
  • [33] Mechanism of Balanced Strength and Ductility in High-Strength Low-Alloy Steel
    Zhu, Yuzhi
    Jia, Yunke
    Chen, Xiaohua
    Wang, Yanlin
    Wang, Zidong
    METALS, 2022, 12 (10)
  • [34] EFFECT OF NICKEL ON YIELD STRENGTH OF HIGH-STRENGTH LOW-ALLOY STEEL
    LAPWOOD, DG
    PRESTON, RR
    METALS TECHNOLOGY, 1978, 5 (AUG): : 286 - 287
  • [35] Tailoring Heterogeneous Microstructure in a High-Strength Low-Alloy Steel for Enhanced Strength-Toughness Balance
    Yu, Yishuang
    Gao, Minliang
    Hu, Bin
    Tian, Chang
    Rong, Xuequan
    Xie, Zhenjia
    Guo, Hui
    Shang, Chengjia
    METALS, 2021, 11 (12)
  • [36] FLAKES IN LOW-CARBON HIGH-STRENGTH LOW-ALLOY STEEL
    NONG, G
    YAO, WX
    CAO, YZ
    MATERIALS CHARACTERIZATION, 1992, 28 (01) : 15 - 21
  • [37] GRAIN REFINEMENT OF HIGH-STRENGTH LOW-ALLOY STEEL.
    Zhang, Liangyun
    Zhang, Zhenhong
    Jin, Yuzhou
    Lu, Xingwu
    Kang T'ieh/Iron and Steel (Peking), 1987, 22 (01): : 40 - 43
  • [38] FATIGUE CRACK NUCLEATION IN A HIGH-STRENGTH LOW-ALLOY STEEL
    BOETTNER, RC
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1967, 239 (07): : 1030 - &
  • [39] HOT DIP GALVANIZING OF HIGH-STRENGTH LOW-ALLOY STEEL
    PRIOR, DC
    TONINI, DE
    METAL FINISHING, 1984, 82 (05) : 15 - 19
  • [40] Tempering Behavior of Novel Low-Alloy High-Strength Steel
    Dudko, Valeriy
    Yuzbekova, Diana
    Gaidar, Sergey
    Vetrova, Sofia
    Kaibyshev, Rustam
    METALS, 2022, 12 (12)