3D Reconstruction from SECCHI-EUVI Images Using an Optical-Flow Algorithm: Method Description and Observation of an Erupting Filament

被引:0
|
作者
S. F. Gissot
J.-F. Hochedez
P. Chainais
J.-P. Antoine
机构
[1] Royal Observatory of Belgium,Solar Influences Data Analysis Centre
[2] Université catholique de Louvain,Unité de Physique Théorique et de Physique Mathématique – FYMA
[3] Université Blaise Pascal Clermont II,LIMOS
[4] CNRS,undefined
来源
Solar Physics | 2008年 / 252卷
关键词
Chromosphere: Active; Optical flow; Prominences: Dynamics, formation and evolution; Stereoscopy; Technique: 3D reconstruction;
D O I
暂无
中图分类号
学科分类号
摘要
SECCHI-EUVI telescopes provide the first EUV images enabling a 3D reconstruction of solar coronal structures. We present a stereoscopic reconstruction method based on the Velociraptor algorithm, a multiscale optical-flow method that estimates displacement maps in sequences of EUV images. Following earlier calibration on sequences of SOHO-EIT data, we apply the algorithm to retrieve depth information from the two STEREO viewpoints using the SECCHI-EUVI telescope. We first establish a simple reconstruction formula that gives the radial distance to the centre of the Sun of a point identified both in EUVI-A and EUVI-B from the separation angle and the displacement map. We select pairs of images taken in the 30.4 nm passband of EUVI-A and EUVI-B, and apply a rigid transform from the EUVI-B image in order to set both images in the same frame of reference. The optical flow computation provides displacement maps from which we reconstruct a dense map of depths using the stereoscopic reconstruction formula. Finally, we discuss the estimation of the height of an erupting filament.
引用
收藏
页码:397 / 408
页数:11
相关论文
共 50 条
  • [11] 3D box method for 3D reconstruction of an object from multi-images
    Alam, J
    Hama, H
    VISION GEOMETRY IX, 2000, 4117 : 81 - 90
  • [12] Emotion Recognition from 3D Videos using Optical Flow Method
    Patil, Gowri
    Suja, P.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 825 - 829
  • [13] 3D surface reconstruction using optical flow for medical imaging
    Weng, N
    Yang, YH
    Pierson, R
    1996 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1997, : 1845 - 1849
  • [14] A method for brain 3D surface reconstruction from MR images
    Zhao D.-X.
    Optoelectronics Letters, 2014, 10 (5) : 383 - 386
  • [15] A method for brain 3D surface reconstruction from MR images
    赵德新
    OptoelectronicsLetters, 2014, 10 (05) : 383 - 386
  • [16] Method of 3D Mesh Reconstruction from Sequences of Calibrated Images
    Merras, Mostafa
    El Akkad, Nabil
    El Hazzat, Soulaiman
    Saaidi, Abderrahim
    Nazih, Abderrazak Gadhi
    Satori, Khalid
    2014 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2014, : 147 - 152
  • [17] A METHOD FOR THE 3D RECONSTRUCTION OF INDOOR SCENES FROM MONOCULAR IMAGES
    OLIVIERI, P
    GATTI, M
    STRAFORINI, M
    TORRE, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 588 : 696 - 700
  • [18] 3D scene reconstruction method based on image optical flow feedback
    Su, Yulin
    International Journal of Information and Communication Technology, 2021, 19 (02) : 184 - 200
  • [19] NRTR: Neuron Reconstruction With Transformer From 3D Optical Microscopy Images
    Wang, Yijun
    Lang, Rui
    Li, Rui
    Zhang, Junsong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 886 - 898
  • [20] 3D tree skeleton reconstruction based on enhanced PyrLK optical flow algorithm
    Zhang, Dejia
    Liang, Shuang
    Zhang, Chen
    Jia, Jinyuan
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (07): : 1247 - 1254