Automatic identification of stone-handling behaviour in Japanese macaques using LabGym artificial intelligence

被引:0
|
作者
Théo Ardoin
Cédric Sueur
机构
[1] Université Paris-Saclay,Master Biodiversité Ecologie Et Evolution
[2] Université Paris-Saclay,Magistère de Biologie
[3] Université de Strasbourg,undefined
[4] IPHC UMR7178,undefined
[5] CNRS,undefined
[6] ANTHROPO-LAB,undefined
[7] ETHICS EA 7446,undefined
[8] Université Catholique de Lille,undefined
[9] Institut Universitaire de France,undefined
来源
Primates | 2024年 / 65卷
关键词
Artificial intelligence; Ethology; Primate behaviour; Deep learning; Japanese macaques;
D O I
暂无
中图分类号
学科分类号
摘要
The latest advances in artificial intelligence technology have opened doors to the video analysis of complex behaviours. In light of this, ethologists are actively exploring the potential of these innovations to streamline the time-intensive behavioural analysis process using video data. Several tools have been developed for this purpose in primatology in the past decade. Nonetheless, each tool grapples with technical constraints. To address these limitations, we have established a comprehensive protocol designed to harness the capabilities of a cutting-edge artificial intelligence-assisted software, LabGym. The primary objective of this study was to evaluate the suitability of LabGym for the analysis of primate behaviour, focusing on Japanese macaques as our model subjects. First, we developed a model that accurately detects Japanese macaques, allowing us to analyse their actions using LabGym. Our behavioural analysis model succeeded in recognising stone-handling-like behaviours on video. However, the absence of quantitative data within the specified time frame limits the ability of our study to draw definitive conclusions regarding the quality of the behavioural analysis. Nevertheless, to the best of our knowledge, this study represents the first instance of applying the LabGym tool specifically for the analysis of primate behaviours, with our model focusing on the automated recognition and categorisation of specific behaviours in Japanese macaques. It lays the groundwork for future research in this promising field to complexify our model using the latest version of LabGym and associated tools, such as multi-class detection and interactive behaviour analysis.
引用
收藏
页码:159 / 172
页数:13
相关论文
共 50 条
  • [32] Automatic detection of mycobacterium tuberculosis using artificial intelligence
    Xiong, Yan
    Ba, Xiaojun
    Hou, Ao
    Zhang, Kaiwen
    Chen, Longsen
    Li, Ting
    JOURNAL OF THORACIC DISEASE, 2018, 10 (03) : 1936 - 1940
  • [33] Modelling of travel behaviour of students using artificial intelligence
    Alex A.P.
    Manju V.S.
    Isaac K.P.
    Archives of Transport, 2019, 51 (03) : 7 - 19
  • [34] Age-specific functions of stone handling, a solitary-object play behavior, in Japanese macaques (Macaca fuscata)
    Nahallage, Charmalie A. D.
    Huffman, Michael A.
    AMERICAN JOURNAL OF PRIMATOLOGY, 2007, 69 (03) : 267 - 281
  • [35] Automatic Identification and Segmentation of Orbital Blowout Fractures Based on Artificial Intelligence
    Bao, Xiao-li
    Zhan, Xi
    Wang, Lei
    Zhu, Qi
    Fan, Bin
    Li, Guang-Yu
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (04):
  • [36] Adaptive artificial intelligence for automatic identification of defect in the angular contact bearing
    Kumar, Anil
    Kumar, Rajesh
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (08): : 277 - 287
  • [37] Stone handling, an object play behaviour in macaques: welfare and neurological health implications of a bio-culturally driven tradition
    Nahallage, Charmalie A. D.
    Leca, Jean-Baptiste
    Huffman, Michael A.
    BEHAVIOUR, 2016, 153 (6-7) : 845 - 869
  • [38] Automatic event identification and extraction from daily drilling reports using an expert system and artificial intelligence
    Cinelli, Lucas P.
    de Oliveira, Jose F. L.
    de Pinho, Vinicius M.
    Passos, Wesley L.
    Padilla, Rafael
    Braz, Patrick F.
    Galves, Breno
    Dalvi, Domenica P.
    Lewenfus, Gabriela
    Ferreira, Jonathas O.
    Ji, Anthony Y. Y.
    de Oliveira, Felipe L.
    Goncalves, Clemente J. C.
    Netto, Sergio L.
    da Silva, Eduardo A. B.
    de Campos, Marcello L. R.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 205
  • [39] Prediction of spontaneous distal ureteral stone passage using artificial intelligence
    Aksakalli, Tugay
    Aksakalli, Isil Karabey
    Cinislioglu, Ahmet Emre
    Utlu, Adem
    Demirdogen, Saban Oguz
    Celik, Feyzullah
    Karabulut, Ibrahim
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2024, 56 (07) : 2179 - 2186
  • [40] Automatic detection of mesiodens on panoramic radiographs using artificial intelligence
    Ha, Eun-Gyu
    Jeon, Kug Jin
    Kim, Young Hyun
    Kim, Jae-Young
    Han, Sang-Sun
    SCIENTIFIC REPORTS, 2021, 11 (01)