Numerical Taylor expansions for invariant manifolds

被引:0
|
作者
Timo Eirola
Jan von Pfaler
机构
[1] Helsinki University of Technology,Institute of Mathematics
来源
Numerische Mathematik | 2004年 / 99卷
关键词
Manifold; Numerical Computation; Nonlinear System; Functional Equation; Mathematical Method;
D O I
暂无
中图分类号
学科分类号
摘要
We consider numerical computation of Taylor expansions of invariant manifolds around equilibria of maps and flows. These expansions are obtained by writing the corresponding functional equation in a number of points, setting up a nonlinear system of equations and solving this system using a simplified Newton’s method. This approach will avoid symbolic or explicit numerical differentiation. The linear algebra issues of solving the resulting Sylvester equations are studied in detail.
引用
收藏
页码:25 / 46
页数:21
相关论文
共 50 条
  • [21] Taylor expansions of distributions
    Triebel, H
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (1-2) : 307 - 317
  • [22] A method of graph transformation type for numerical simulation of invariant manifolds
    Kornev A.A.
    Proceedings of the Steklov Institute of Mathematics, 2007, 256 (1) : 223 - 237
  • [23] INVARIANT MANIFOLDS
    HIRSCH, MW
    PUGH, CC
    SHUB, M
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (05) : 1015 - &
  • [24] High-order expansions of invariant manifolds of libration point orbits with applications to mission design
    Masdemont, JJ
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2005, 20 (01): : 59 - 113
  • [25] Taylor expansions in chemical potential
    Gavai, R
    Gupta, S
    Roy, R
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2004, (153): : 270 - 276
  • [26] Reliability of Taylor expansions in QCD
    Brandt, B. B.
    Endrodi, G.
    PHYSICAL REVIEW D, 2019, 99 (01)
  • [27] Taylor Expansions of Discount Factors
    Tang, Yunhao
    Rowland, Mark
    Munos, Remi
    Valko, Michal
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7134 - 7144
  • [28] Taylor expansions on Lefschetz thimbles
    Di Renzo, F.
    Singh, S.
    Zambello, K.
    PHYSICAL REVIEW D, 2021, 103 (03)
  • [29] Invariant Connections, Lie Algebra Actions, and Foundations of Numerical Integration on Manifolds
    Munthe-Kaas, Hans Z.
    Stern, Ari
    Verdier, Olivier
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2020, 4 (01) : 49 - 68
  • [30] Energies, group-invariant kernels and numerical integration on compact manifolds
    Damelin, S. B.
    Levesley, J.
    Ragozin, D. L.
    Sun, X.
    JOURNAL OF COMPLEXITY, 2009, 25 (02) : 152 - 162