Riemann–Hilbert approach and N-soliton solutions for a new two-component Sasa–Satsuma equation

被引:0
|
作者
Jia Wang
Ting Su
Xianguo Geng
Ruomeng Li
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Henan University of Engineering,College of Science
来源
Nonlinear Dynamics | 2020年 / 101卷
关键词
Riemann–Hilbert approach; Two component Sasa–Satsuma equation; -soliton solution;
D O I
暂无
中图分类号
学科分类号
摘要
A new two-component Sasa–Satsuma equation associated with a 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrix spectral problem is proposed by resorting to the zero-curvature equation. Riemann–Hilbert problems are formulated on the basis of spectral analysis of the 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrix Lax pair for the two-component Sasa–Satsuma equation, from which zero structures of the Riemann–Hilbert problems are investigated. As applications, N-soliton formulas of the two-component Sasa–Satsuma equation are obtained by solving a particular Riemann–Hilbert problem corresponding to the reflectionless case. Further, the obtained N-soliton formulas are expressed by the ratios of determinants, which are more compact and convenient for symbolic computations. Moreover, the interaction dynamics of the multi-soliton solutions are analyzed and graphically illustrated.
引用
收藏
页码:597 / 609
页数:12
相关论文
共 50 条