Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries

被引:0
|
作者
Priya Mudgal
Himani Arora
Jayashree Pati
Manish K. Singh
Mahantesh Khetri
Rajendra S. Dhaka
机构
[1] Indian Institute of Technology Delhi,Department of Physics
关键词
Transition metal dichalcogenide (TMD); Sodium-ion batteries (SIBs); Anode material; MoSeTe; Electrochemical performance;
D O I
暂无
中图分类号
学科分类号
摘要
Sodium ion batteries (SIBs) are considered as an efficient alternative for lithium-ion batteries (LIBs) owing to the natural abundance and low cost of sodium than lithium. In this context, the anode materials play a vital role in rechargeable batteries to acquire high energy and power density. In order to demonstrate transition metal dichalcogenide as potential anode materials, we have synthesized MoSeTe sample by conventional flux method, and the structure and morphology are characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. These characterisations confirm the hexagonal crystal symmetry with p63/mmc space group and layered morphology of MoSeTe. We investigate the electrochemical performance of a MoSeTe as a negative electrode (anode) for SIBs in the working potential range of 0.01 to 3.0 V. In a half-cell configuration, the MoSeTe as an anode and Na metal as counter/reference electrode exhibits significant initial specific discharge capacities of around 475 and 355 mAh g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} at current densities of 50 and 100 mA g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}, respectively. However, the capacity degraded significantly like ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx\,$$\end{document}200 mAh g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} in 2nd cycle, but exhibited ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx\,$$\end{document} 100% Coulombic efficiency, which suggest for further modification in this material to improve its stability. The cyclic voltammetry study reveals the reversibility of the material after 1st cycle, resulting no change in the initial peak positions. The electrochemical impedance spectroscopy measurements affirm the smaller charge transfer resistance of fresh cells than the cells after 10th cycle. Moreover, the extracted diffusion coefficient is found to be of the order of 10-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-14}$$\end{document} cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}.
引用
收藏
页码:430 / 438
页数:8
相关论文
共 50 条
  • [31] Dual anode materials for lithium- and sodium-ion batteries
    Luo, Yuqing
    Tang, Yijian
    Zheng, Shasha
    Yan, Yan
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (10) : 4236 - 4259
  • [32] Biphenylene Nanotube: A Promising Anode Material for Sodium-Ion Batteries
    Vafaee, Mohsen
    Moghaddam, Maryam Farajikhah
    Nasrollahpour, Mokhtar
    ADVANCED MATERIALS INTERFACES, 2023, 10 (13)
  • [33] FeWO4: An Anode Material for Sodium-Ion Batteries
    Wang, Wei
    Xiong, Weiyi
    Sun, He
    Jiao, Shuqiang
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 899 - 905
  • [34] Development and Evaluation of Sn Foil Anode for Sodium-Ion Batteries
    Kim, Changhyeon
    Kim, Huihun
    Sadan, Milan K.
    Jeon, Minyeong
    Cho, Gyubong
    Ahn, Jouhyeon
    Kim, Kiwon
    Cho, Kwonkoo
    Ahn, Hyojun
    SMALL, 2021, 17 (50)
  • [35] Nanostructured FexSbyOz Composites as Anode Materials for Sodium-Ion Batteries
    Nguyen, Tuan Loi
    Park, Sang Joon
    Kim, Ji Hyeon
    Kim, Il Tae
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (09) : 1488 - 1492
  • [36] Fast-Charging Anode Materials for Sodium-Ion Batteries
    Wan, Yanhua
    Huang, Biyan
    Liu, Wenshuai
    Chao, Dongliang
    Wang, Yonggang
    Li, Wei
    ADVANCED MATERIALS, 2024, 36 (35)
  • [37] Overview of coals as carbon anode materials for sodium-ion batteries
    Kong, Junli
    Su, Zhijiang
    Dong, Chunwei
    Chen, Quanbin
    Pan, Guanghong
    CLEAN ENERGY, 2024, 8 (04): : 197 - 218
  • [38] Mesocarbon microbeads with superior anode performance for sodium-ion batteries
    Jin-Xia Wang
    Yun-Peng Zhang
    Yuan Guo
    Ming-Wei Li
    Cheng-Yang Wang
    Ionics, 2021, 27 : 677 - 682
  • [39] Is single layer graphene a promising anode for sodium-ion batteries?
    Ramos, Alberto
    Camean, Ignacio
    Cuesta, Nuria
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 178 : 392 - 397
  • [40] Wood-derived carbon anode for sodium-ion batteries
    Feng, Bing
    Xu, Laiqiang
    Yu, Zhaoyang
    Liu, Gonggang
    Liao, Yuanyuan
    Chang, Shanshan
    Hu, Jinbo
    ELECTROCHEMISTRY COMMUNICATIONS, 2023, 148