We show that the problem of finding a perfect matching satisfying a single equality constraint with a 0–1 coefficients in an n × n incomplete bipartite graph, polynomially reduces to a special case of the same peoblem called the partitioned case. Finding a solution matching for the partitioned case in the incomlpete bipartite graph, is equivalent to minimizing a partial sum of the variables over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Q_{n_{1,} n_2 }^{n,r_1 } $$
\end{document} = the convex hull of incidence vectors of solution matchings for the partitioned case in the complete bipartite graph. An important strategy to solve this minimization problem is to develop a polyhedral characterization of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Q_{n_{1,} n_2 }^{n,r_1 } $$
\end{document}. Towards this effort, we present two large classes of valid inequalities for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Q_{n_{1,} n_2 }^{n,r_1 } $$
\end{document}, which are proved to be facet inducing using a facet lifting scheme.