A note on Choquard equations in two space dimensions

被引:0
|
作者
Tarek Saanouni
机构
[1] Qassim University,Department of Mathematics, College of Science and Arts in Uglat Asugour
关键词
Non-linear Schrödinger–Choquard equation; Global existence; Scattering; Blow-up; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
This note studies the Choquard equation with exponential source term in two space dimensions: iu˙+Δu=ϵ(Iα∗G(|u|2))g(u).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i\dot{u} +\Delta u=\epsilon (I_\alpha *G(|u|^2))g(u) . \end{aligned}$$\end{document}First, the local/global well-posedness and scattering are obtained in the energy space. Second, the existence of unstable standing waves is proved. Finally, the existence of global/non-global solutions is discussed via the potential-well method.
引用
收藏
相关论文
共 50 条
  • [41] Analytic smoothing effects for nonlocal nonlinear Shrodoinger equations in two space dimensions
    Hayashi, N
    Uchida, H
    Naumkin, PI
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 635 - 641
  • [42] Dromion solutions for dispersive long-wave equations in two space dimensions
    Dept. of Mathematics and Physics, Guangdong University of Technology, Guangzhou 510090, China
    不详
    不详
    Comm. Nonlinear Sci. Numer. Simul., 4 (225-229):
  • [43] Nematodynamics equations in two dimensions
    Polimeno, A
    Orian, L
    Nordio, PL
    Martins, AF
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1999, 336 : 17 - 32
  • [44] Nematodynamics equations in two dimensions
    Polimeno, Antonino
    Orian, Laura
    Nordio, Pier Luigi
    Martins, Assis F.
    Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals, 1999, 336 : 17 - 32
  • [45] A NOTE ON THE THERMISTOR PROBLEM IN 2 SPACE DIMENSIONS
    HOWISON, S
    QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (03) : 509 - 512
  • [46] Choquard equations with saturable reaction
    Sun, Juntao
    Zhang, Jian
    Radulescu, Vicentiu D.
    Wu, Tsung-fang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (02)
  • [47] Choquard equations with mixed potential
    de Lima, Romildo N.
    Souto, Marco A. S.
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (04):
  • [48] Choquard equations with recurrent potentials
    Ding, Hui-Sheng
    Liu, Quan
    Long, Wei
    Zhong, Lan
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [49] LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER EQUATIONS IN ONE AND TWO SPACE DIMENSIONS
    Shimomura, Akihiro
    Tonegawa, Satoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2004, 17 (1-2) : 127 - 150
  • [50] Low regularity solutions of the dirac Klein-Gordon equations in two space dimensions
    Bournaveas, N
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) : 1345 - 1366