A quantum algorithm for approximating the influences of Boolean functions and its applications

被引:0
|
作者
Hongwei Li
Li Yang
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Information Security, Institute of Information Engineering
[2] Henan Institute of Education,School of Mathematics and Statistics
[3] Chinese Academy of Sciences,Data Assurance and Communication Security Research Center
[4] University of Chinese Academy of Sciences,undefined
来源
Quantum Information Processing | 2015年 / 14卷
关键词
The Bernstein–Vazirani algorithm; Quantum algorithm ; Influence of Boolean function;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the influences of variables on a Boolean function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} based on the quantum Bernstein–Vazirani algorithm. A previous paper (Floess et al. in Math Struct Comput Sci 23:386, 2013) has proved that if an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-variable Boolean function f(x1,…,xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x_1,\ldots ,x_n)$$\end{document} does not depend on an input variable xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}, using the Bernstein–Vazirani circuit for f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} will always output y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} that has a 0 in the i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document}th position. We generalize this result and show that, after running this algorithm once, the probability of getting a 1 in each position i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document} is equal to the dependence degree of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} on the variable xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}, i.e., the influence of xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} on f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. Based on this, we give an approximation algorithm to evaluate the influence of any variable on a Boolean function. Next, as an application, we use it to study the Boolean functions with juntas and construct probabilistic quantum algorithms to learn certain Boolean functions. Compared with the deterministic algorithms given by Floess et al., our probabilistic algorithms are faster.
引用
收藏
页码:1787 / 1797
页数:10
相关论文
共 50 条
  • [31] Approximating functions for embedded and ASIC applications
    Hauser, JW
    Purdy, CN
    PROCEEDINGS OF THE 44TH IEEE 2001 MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2001, : 478 - 481
  • [32] Quantum learning of concentrated Boolean functions
    Krishna Palem
    Duc Hung Pham
    M. V. Panduranga Rao
    Quantum Information Processing, 21
  • [33] Quantum learning of concentrated Boolean functions
    Palem, Krishna
    Pham, Duc Hung
    Rao, M. V. Panduranga
    QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [34] Approximating Pseudo-Boolean Functions on Non-Uniform Domains
    Lax, R. F.
    Ding, Guoli
    Chen, Peter P.
    Chen, J.
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1754 - 1755
  • [35] Construction of Generalized Quantum Boolean Functions
    PANG Shanqi
    ZHANG Qingjuan
    LIN Xiao
    Chinese Journal of Electronics, 2019, 28 (03) : 508 - 513
  • [36] Random Networks with Quantum Boolean Functions
    Franco, Mario
    Zapata, Octavio
    Rosenblueth, David A.
    Gershenson, Carlos
    MATHEMATICS, 2021, 9 (08)
  • [37] Construction of Generalized Quantum Boolean Functions
    Pang Shanqi
    Zhang Qingjuan
    Lin Xiao
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (03) : 508 - 513
  • [38] Quantum algorithms for testing Boolean functions
    Floess, Dominik F.
    Andersson, Erika
    Hillery, Mark
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2010, (26): : 101 - 108
  • [39] Adiabatic quantum gates and Boolean functions
    Andrecut, M
    Ali, MK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (25): : L267 - L273
  • [40] A hypercube minimization algorithm for Boolean functions
    Barbour, AE
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-III, PROCEEDINGS, 1997, : 811 - 815