A quantum algorithm for approximating the influences of Boolean functions and its applications

被引:0
|
作者
Hongwei Li
Li Yang
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Information Security, Institute of Information Engineering
[2] Henan Institute of Education,School of Mathematics and Statistics
[3] Chinese Academy of Sciences,Data Assurance and Communication Security Research Center
[4] University of Chinese Academy of Sciences,undefined
来源
关键词
The Bernstein–Vazirani algorithm; Quantum algorithm ; Influence of Boolean function;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the influences of variables on a Boolean function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} based on the quantum Bernstein–Vazirani algorithm. A previous paper (Floess et al. in Math Struct Comput Sci 23:386, 2013) has proved that if an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-variable Boolean function f(x1,…,xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x_1,\ldots ,x_n)$$\end{document} does not depend on an input variable xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}, using the Bernstein–Vazirani circuit for f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} will always output y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y$$\end{document} that has a 0 in the i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document}th position. We generalize this result and show that, after running this algorithm once, the probability of getting a 1 in each position i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document} is equal to the dependence degree of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} on the variable xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document}, i.e., the influence of xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} on f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. Based on this, we give an approximation algorithm to evaluate the influence of any variable on a Boolean function. Next, as an application, we use it to study the Boolean functions with juntas and construct probabilistic quantum algorithms to learn certain Boolean functions. Compared with the deterministic algorithms given by Floess et al., our probabilistic algorithms are faster.
引用
收藏
页码:1787 / 1797
页数:10
相关论文
共 50 条
  • [1] A quantum algorithm for approximating the influences of Boolean functions and its applications
    Li, Hongwei
    Yang, Li
    QUANTUM INFORMATION PROCESSING, 2015, 14 (06) : 1787 - 1797
  • [2] Quantum algorithm for approximating partition functions
    Wocjan, Pawel
    Chiang, Chen-Fu
    Nagaj, Daniel
    Abeyesinghe, Anura
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [3] A Quantum Algorithm for Boolean Functions Processing
    Aljuaydi, Fahad
    Abdelazim, Samar
    Darwish, Mohamed M.
    Zidan, Mohammed
    IEEE ACCESS, 2024, 12 : 164503 - 164519
  • [4] Approximating Boolean functions by OBDDs
    Gronemeier, Andre
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (02) : 194 - 209
  • [5] Approximating Boolean functions by OBDDs
    Gronemeier, A
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 251 - 262
  • [6] Approximating the Distance to Monotonicity of Boolean Functions
    Pallavoor, Ramesh Krishnan S.
    Raskhodnikova, Sofya
    Waingarten, Erik
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1995 - 2009
  • [7] Approximating the Distance to Monotonicity of Boolean Functions
    Pallavoor, Ramesh Krishnan S.
    Raskhodnikova, Sofya
    Waingarten, Erik
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1995 - 2009
  • [8] Approximating the distance to monotonicity of Boolean functions
    Pallavoor, Ramesh Krishnan S.
    Raskhodnikova, Sofya
    Waingarten, Erik
    RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (02) : 233 - 260
  • [9] A Modified Adiabatic Quantum Algorithm for Evaluation of Boolean Functions
    Sun, Jie
    Lu, Songfeng
    Liu, Fang
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2015, 22 (03):
  • [10] A quantum algorithm to approximate the linear structures of Boolean functions
    Li, Hongwei
    Yang, Li
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2018, 28 (01) : 1 - 13