Global solutions to a chemotaxis model with consumption of chemoattractant

被引:0
|
作者
Liangchen Wang
Chunlai Mu
Xuegang Hu
机构
[1] Chongqing University of Posts and Telecommunications,College of Sciences
[2] Chongqing University,College of Mathematics and Statistics
关键词
Chemotaxis; Global existence; Boundedness; 92C17; 35K55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the following chemotaxis system ut=∇·(D(u)∇u)-∇·(S(u)∇v),x∈Ω,t>0,vt=Δv-uv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{llll}u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v),\quad &x\in \Omega,\quad t>0,\\ v_t=\Delta v-uv,\quad &x\in\Omega,\quad t>0,\end{array} \right.$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset \mathbb{R}^n}$$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geq2}$$\end{document}), not necessarily being convex. There are some constants cD>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_D > 0}$$\end{document}, cS>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_S > 0}$$\end{document}, m∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\in\mathbb{R}}$$\end{document} and q∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q\in\mathbb{R}}$$\end{document} such that D(u)≥cD(u+1)m-1andS(u)≤cS(u+1)q-1forallu≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(u) \geq c_D(u+1)^{m-1} \quad\text{and} \quad S(u)\leq c_S(u+1)^{q-1}\quad for all \,\,\,u\geq0.$$\end{document}If q<m+n+22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q < m+\frac{n+2}{2n}}$$\end{document}, it is shown that the model possesses a unique global classical solution which is uniformly bounded; if q<m2+n+22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q < \frac{m}{2}+\frac{n+2}{2n}}$$\end{document}, the global existence of solution is established.
引用
收藏
相关论文
共 50 条
  • [41] Optimal Control Related to Weak Solutions of a Chemotaxis-Consumption Model
    André Luiz Corrêa Vianna Filho
    Francisco Guillén-González
    Applied Mathematics & Optimization, 2024, 89
  • [42] Global classical solutions to an indirect chemotaxis-consumption model with signal-dependent degenerate diffusion and logistic source
    Zheng, Meng
    Wang, Liangchen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [43] Global solutions to a chemotaxis system with singular density-suppressed motility and superlinear consumption
    Zhang, Zhiguang
    Li, Yuxiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (01)
  • [44] Global generalized solutions for a class of chemotaxis-consumption systems with generalized logistic source
    Lyu, Wenbin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 283 : 85 - 109
  • [45] Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling
    Pang, Peter Y. H.
    Wang, Yifu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (11): : 2211 - 2235
  • [46] Global radial solutions in classical Keller-Segel model of chemotaxis
    Biler, Piotr
    Karch, Grzegorz
    Pilarczyk, Dominika
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (11) : 6352 - 6369
  • [47] Local and global solutions for a hyperbolic-elliptic model of chemotaxis on a network
    Guarguaglini, Francesca Romana
    Papi, Marco
    Smarrazzo, Flavia
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (08): : 1465 - 1509
  • [48] GLOBAL EXISTENCE OF SOLUTIONS TO AN ATTRACTION-REPULSION CHEMOTAXIS MODEL WITH GROWTH
    Wu, Sainan
    Shi, Junping
    Wu, Boying
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) : 1037 - 1058
  • [49] Global existence and boundedness of classical solutions for a chemotaxis model with logistic source
    Baghaei, Khadijeh
    Hesaaraki, Mahmoud
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 585 - 591
  • [50] Global existence to a chemotaxis-consumption model with nonlinear diffusion and singular sensitivity
    Jia, Zhe
    Yang, Zuodong
    APPLICABLE ANALYSIS, 2019, 98 (16) : 2916 - 2929