On the fast computation of the Dirichlet-multinomial log-likelihood function

被引:0
|
作者
Alessandro Languasco
Mauro Migliardi
机构
[1] Università di Padova,Dipartimento di Matematica,“Tullio Levi
[2] Università di Padova,Civita”
来源
Computational Statistics | 2023年 / 38卷
关键词
Dirichlet multinomial distribution; Log-likelihood; Euler’s Gamma;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new algorithm to compute the difference between values of the logΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \Gamma$$\end{document}-function in close points, where Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} denotes Euler’s gamma function. As a consequence, we obtain a way of computing the Dirichlet-multinomial log-likelihood function which is more accurate, has a better computational complexity and a wider range of application than the previously known ones.
引用
收藏
页码:1995 / 2013
页数:18
相关论文
共 50 条
  • [1] On the fast computation of the Dirichlet-multinomial log-likelihood function
    Languasco, Alessandro
    Migliardi, Mauro
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (04) : 1995 - 2013
  • [2] An efficient algorithm for accurate computation of the Dirichlet-multinomial log-likelihood function
    Yu, Peng
    Shaw, Chad A.
    [J]. BIOINFORMATICS, 2014, 30 (11) : 1547 - 1554
  • [3] THE LOG-LIKELIHOOD RATIO FOR SPARSE MULTINOMIAL MIXTURES
    ZELTERMAN, D
    [J]. STATISTICS & PROBABILITY LETTERS, 1986, 4 (02) : 95 - 99
  • [4] PSEUDO MAXIMUM-LIKELIHOOD ESTIMATION FOR THE DIRICHLET-MULTINOMIAL DISTRIBUTION
    CHUANG, C
    COX, C
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (10) : 2293 - 2311
  • [5] Efficient Computation of Log-likelihood Function in Clustering Overdispersed Count Data Using Multinomial Beta-Liouville Distribution
    Daghyani, Masoud
    Zamzami, Nuha
    Bouguila, Nizar
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 986 - 993
  • [6] Approximate Bayesian computation with modified log-likelihood ratios
    Ventura L.
    Reid N.
    [J]. METRON, 2014, 72 (2) : 231 - 245
  • [7] Asymptotics of Entropy of the Dirichlet-Multinomial Distribution
    Turowski, Krzysztof
    Jacquet, Philippe
    Szpankowski, Wojciech
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1517 - 1521
  • [8] On tests for global maximum of the log-likelihood function
    Blatt, Doron
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2510 - 2525
  • [9] Fisher information matrix of the Dirichlet-multinomial distribution
    Paul, SR
    Balasooriya, U
    Banerjee, T
    [J]. BIOMETRICAL JOURNAL, 2005, 47 (02) : 230 - 236
  • [10] CONCAVITY OF BOX-COX LOG-LIKELIHOOD FUNCTION
    KOUIDER, E
    CHEN, HF
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 25 (02) : 171 - 175