Linear codes close to the Griesmer bound and the related geometric structures

被引:0
|
作者
Assia Rousseva
Ivan Landjev
机构
[1] Sofia University,Institute of Mathematics and Informatics
[2] New Bulgarian University,undefined
[3] Bulgarian Academy of Sciences,undefined
来源
关键词
Griesmer bound; Optimal linear codes; Arcs; Minihypers; 94B65; 51E21; 51E22; 94B05; 94B27; 51E15; 51E23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the behavior of the function tq(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)$$\end{document} defined as the maximal deviation from the Griesmer bound of the optimal length of a linear code with a fixed dimension k: tq(k)=maxd(nq(k,d)-gq(k,d)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} t_q(k)=\max _d(n_q(k,d)-g_q(k,d)), \end{aligned}$$\end{document}where the maximum is taken over all minimum distances d. Here nq(k,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_q(k,d)$$\end{document} is the shortest length of a q-ary linear code of dimension k and minimum distance d, gq(k,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_q(k,d)$$\end{document} is the Griesmer bound for a code of dimension k and minimum distance d. We give two equivalent geometric versions of this problem in terms of arcs and minihypers. We prove that tq(k)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)\rightarrow \infty $$\end{document} when k→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\rightarrow \infty $$\end{document} which implies that the problem is non-trivial. We prove upper bounds on the function tq(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)$$\end{document}. For codes of even dimension k we show that tq(k)≤2(qk/2-1)/(q-1)-(k+q-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)\le 2(q^{k/2}-1)/(q-1)-(k+q-1)$$\end{document} which implies that tq(k)∈O(qk/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)\in O(q^{k/2})$$\end{document} for all k. For three-dimensional codes and q even we prove the stronger estimate tq(3)≤logq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(3)\le \log q-1$$\end{document}, as well as tq(3)≤q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(3)\le \sqrt{q}-1$$\end{document} for the case q square.
引用
收藏
页码:841 / 854
页数:13
相关论文
共 50 条
  • [41] A CONSTRUCTION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND
    TAMARI, F
    [J]. DISCRETE MATHEMATICS, 1993, 116 (1-3) : 269 - 287
  • [42] Linear codes over Fq[x]/(x2) and GR(p2, m) reaching the Griesmer bound
    Li, Jin
    Zhang, Aixian
    Feng, Keqin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (12) : 2837 - 2855
  • [43] The geometric approach to linear codes
    Landjev, IN
    [J]. FINITE GEOMETRIES, PROCEEDINGS, 2001, 3 : 247 - 256
  • [44] Geometric representations of linear codes
    Rytir, Pavel
    [J]. ADVANCES IN MATHEMATICS, 2015, 282 : 1 - 22
  • [45] On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound
    Li, Ruihu
    Li, Xueliang
    Guo, Luobin
    [J]. QUANTUM INFORMATION PROCESSING, 2015, 14 (12) : 4427 - 4447
  • [46] On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound
    Ruihu Li
    Xueliang Li
    Luobin Guo
    [J]. Quantum Information Processing, 2015, 14 : 4427 - 4447
  • [47] On Some Families of Codes Related to the Even Linear Codes Meeting the Grey-Rankin Bound
    Bouyukliev, Iliya
    Bouyuklieva, Stefka
    Pashinska-Gadzheva, Maria
    [J]. MATHEMATICS, 2022, 10 (23)
  • [48] On the linear programming bound for linear Lee codes
    Astola, Helena
    Tabus, Ioan
    [J]. SPRINGERPLUS, 2016, 5 : 1 - 13
  • [49] The order bound for general algebraic geometric codes
    Beelen, Peter
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 665 - 680
  • [50] NEW BOUND AND CONSTRUCTIONS FOR GEOMETRIC ORTHOGONAL CODES AND GEOMETRIC 180-ROTATING ORTHOGONAL CODES
    Su, Xiaowei
    Wang, Lidong
    Tian, Zihong
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 961 - 983