A new proof of Faltings’ local-global principle for the finiteness of local cohomology modules

被引:0
|
作者
Davood Asadollahi
Reza Naghipour
机构
[1] University of Tabriz,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Archiv der Mathematik | 2014年 / 103卷
关键词
Associated primes; Faltings’ local-global principle; Local cohomology; 13D45; 14B15; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative Noetherian ring, and let b⊆a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{b} \subseteq \mathfrak{a}}$$\end{document} be ideals of R. The goal of this paper is to show that, for a finitely generated R-module M, if the set AssR(Hafab(M)(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Ass}_R (H_{\mathfrak{a}}^{f_{\mathfrak{a}}^{\mathfrak{b}}(M)}(M))}$$\end{document} is finite or fa(M)≠cab(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_{\mathfrak{a}}(M) \neq c_{\mathfrak{a}}^{\mathfrak{b}}(M)}$$\end{document}, then fab(M)=inf{faRpbRp(Mp)|p∈Spec(R)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_{\mathfrak{a}}^{\mathfrak{b}}(M) = {\rm inf} \{f_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\,\,\,\mathfrak{p} \in {\rm Spec}(R)\}}$$\end{document}, where cab(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{\mathfrak{a}}^{\mathfrak{b}}(M)}$$\end{document} denotes the first non b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{b}}$$\end{document}-cofiniteness of the local cohomology module Hai(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^i_{\mathfrak{a}}(M)}$$\end{document}. As a consequence of this, we provide a new and short proof of the Faltings’ local-global principle for finiteness dimensions. Also, several new results concerning the finiteness dimensions are given.
引用
收藏
页码:451 / 459
页数:8
相关论文
共 50 条
  • [41] FINITENESS RESULT FOR GENERALIZED LOCAL COHOMOLOGY MODULES
    Tehranian, Abolfazl
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (02): : 447 - 451
  • [42] On the finiteness of associated primes of local cohomology modules
    Nguyen Minh Tri
    Tran Tuan Nam
    Nguyen Thanh Nam
    Nguyen Duc Minh
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 21 - 30
  • [43] Finiteness properties of duals of local cohomology modules
    Hellus, M.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (11) : 3590 - 3602
  • [44] ON THE FINITENESS OF ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES
    Pham Hung Quy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (06) : 1965 - 1968
  • [45] Remarks on the local-global principle for a subcategory consisting of extension modules
    Yoshizawa, Takeshi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (12)
  • [46] FINITENESS PROPERTIES OF LOCAL COHOMOLOGY MODULES FOR a-MINIMAX MODULES
    Azami, Jafar
    Naghipour, Reza
    Vakili, Bahram
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (02) : 439 - 448
  • [47] On the exponential local-global principle
    Bartolome, Boris
    Bilu, Yuri
    Luca, Florian
    ACTA ARITHMETICA, 2013, 159 (02) : 101 - 111
  • [48] Local-global principles for Galois cohomology
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) : 215 - 253
  • [49] Cofiniteness and finiteness of local cohomology modules over regular local rings
    Jafar A’zami
    Naser Pourreza
    Czechoslovak Mathematical Journal, 2017, 67 : 733 - 740
  • [50] Cofiniteness and finiteness of local cohomology modules over regular local rings
    A'zami, Jafar
    Pourreza, Naser
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 733 - 740