Conformal extensions of functions defined on arbitrary subsets of Riemann surfaces

被引:0
|
作者
P. M. Gauthier
V. Nestoridis
机构
[1] Université de Montréal,Département de mathématiques et de statistique
[2] University of Athens Panepisitmioupolis,Department of Mathematics
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Analytic continuation; Analytic arc; Primary 30B40; Secondary 30F99;
D O I
暂无
中图分类号
学科分类号
摘要
For a function defined on an arbitrary subset of a Riemann surface, we give conditions which allow the function to be extended conformally. One folkloric consequence is that two common definitions of an analytic arc in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} are equivalent.
引用
收藏
页码:61 / 67
页数:6
相关论文
共 50 条