Conformal invariants defined by harmonic functions on Riemann surfaces

被引:1
|
作者
Shiga, Hiroshige [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528550, Japan
基金
日本学术振兴会;
关键词
Harnack distance; harmonic Hardy space; hyperbolic distance;
D O I
10.2969/jmsj/06810441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider conformal invariants defined by various spaces of harmonic functions on Riemann surfaces. The Harnack distance is a typical one. We give sharp inequalities comparing those invariants with the hyperbolic metric on the Riemann surface and we determine when equalities hold. We also describe the Harnack distance in terms of the Martin compactification and discuss some properties of the distance.
引用
收藏
页码:441 / 458
页数:18
相关论文
共 50 条