Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications

被引:0
|
作者
George Z. Tan
Yingge Zhou
机构
[1] Texas Tech University,Department of Industrial, Manufacturing and Systems Engineering
来源
Nano-Micro Letters | 2018年 / 10卷
关键词
Divergence electrospinning; 3D nanofiber scaffold; Tissue engineering; Microstructure gradient;
D O I
暂无
中图分类号
学科分类号
摘要
The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative electrospinning strategy that adopts a symmetrically divergent electric field to induce rapid self-assembly of aligned polycaprolactone (PCL) nanofibers into a centimeter-scale architecture between separately grounded bevels. The 3D microstructures of the nanofiber scaffolds were characterized through a series of sectioning in both vertical and horizontal directions. PCL/collagen (type I) nanofiber scaffolds with different density gradients were incorporated in sodium alginate hydrogels and subjected to elemental analysis. Human fibroblasts were seeded onto the scaffolds and cultured for 7 days. Our studies showed that the inclination angle of the collector had significant effects on nanofiber attributes, including the mean diameter, density gradient, and alignment gradient. The fiber density and alignment at the peripheral area of the 45°-collector decreased by 21% and 55%, respectively, along the z-axis, while those of the 60°-collector decreased by 71% and 60%, respectively. By altering the geometry of the conductive areas on the collecting bevels, polyhedral and cylindrical scaffolds composed of aligned fibers were directly fabricated. By using a four-bevel collector, the nanofibers formed a matrix of microgrids with a density of 11%. The gradient of nitrogen-to-carbon ratio in the scaffold-incorporated hydrogel was consistent with the nanofiber density gradient. The scaffolds provided biophysical stimuli to facilitate cell adhesion, proliferation, and morphogenesis in 3D.[graphic not available: see fulltext]
引用
收藏
相关论文
共 50 条
  • [31] Fabrication and Characterization of Polycaprolactone-Baghdadite Nanofibers by Electrospinning Method for Tissue Engineering Applications
    Forogh, Mir Reza
    Emadi, Rahmatollah
    Ahmadian, Mehdi
    Saboori, Abdollah
    MATERIALS, 2024, 17 (17)
  • [32] 3D printing of bioceramic/polycaprolactone composite scaffolds for bone tissue engineering
    Shie, Ming-You
    Lai, Chun-Che
    Chiang, Po-Han
    Chung, Han-Chi
    Ho, Chia-Che
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 142 - 145
  • [33] In vitro evaluation of 3D printed polycaprolactone scaffolds with angle-ply architecture for annulus fibrosus tissue engineering
    Christiani, T. R.
    Baroncini, E.
    Stanzione, J.
    Vernengo, A. J.
    REGENERATIVE BIOMATERIALS, 2019, 6 (03) : 175 - 184
  • [34] Modified Bi-Layered Polycaprolactone Nanofiber Scaffolds for Vascular Tissue Engineering Applications
    Fouad, H.
    Al-Shammari, Basheer A.
    AlRez, Mohammed Fayez
    Al-Fotawi, Randa
    Mahmood, Amer
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2019, 11 (01) : 1 - 10
  • [35] 3D Bioprinting Technologies for Tissue Engineering Applications
    Gu, Bon Kang
    Choi, Dong Jin
    Park, Sang Jun
    Kim, Young-Jin
    Kim, Chun-Ho
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 15 - 28
  • [36] Microfabricated 3D scaffolds for tissue engineering applications
    Mata, A
    Fleischman, AJ
    Roy, S
    Nanoscale Materials Science in Biology and Medicine, 2005, 845 : 97 - 103
  • [37] 3D Nanoprinting Technologies for Tissue Engineering Applications
    Lee, Jin Woo
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [38] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [39] 3D BIOPRINTING PCLSCAFFOLDS FOR TISSUE ENGINEERING APPLICATIONS
    Park, K.
    Hwang, I
    Lee, H.
    Park, J.
    Park, S.
    JOURNAL OF SEXUAL MEDICINE, 2015, 12 : 32 - 32
  • [40] A review on 3D printing in tissue engineering applications
    Mani, Mohan Prasath
    Sadia, Madeeha
    Jaganathan, Saravana Kumar
    Khudzari, Ahmad Zahran
    Supriyanto, Eko
    Saidin, Syafiqah
    Ramakrishna, Seeram
    Ismail, Ahmad Fauzi
    Faudzi, Ahmad Athif Mohd
    JOURNAL OF POLYMER ENGINEERING, 2022, 42 (03) : 243 - 265