Distributional semantic pre-filtering in context-aware recommender systems

被引:0
|
作者
Victor Codina
Francesco Ricci
Luigi Ceccaroni
机构
[1] Technical University of Catalonia,Software Department
[2] Free University of Bozen-Bolzano,Faculty of Computer Science
来源
User Modeling and User-Adapted Interaction | 2016年 / 26卷
关键词
Context-awareness; Recommender systems; Distributional semantics; Collaborative filtering; Matrix factorization; Pre-filtering; Clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Context-aware recommender systems improve context-free recommenders by exploiting the knowledge of the contextual situation under which a user experienced and rated an item. They use data sets of contextually-tagged ratings to predict how the target user would evaluate (rate) an item in a given contextual situation, with the ultimate goal to recommend the items with the best estimated ratings. This paper describes and evaluates a pre-filtering approach to context-aware recommendation, called distributional-semantics pre-filtering (DSPF), which exploits in a novel way the distributional semantics of contextual conditions to build more precise context-aware rating prediction models. In DSPF, given a target contextual situation (of a target user), a matrix-factorization predictive model is built by using the ratings tagged with the contextual situations most similar to the target one. Then, this model is used to compute rating predictions and identify recommendations for that specific target contextual situation. In the proposed approach, the definition of the similarity of contextual situations is based on the distributional semantics of their composing conditions: situations are similar if they influence the user’s ratings in a similar way. This notion of similarity has the advantage of being directly derived from the rating data; hence it does not require a context taxonomy. We analyze the effectiveness of DSPF varying the specific method used to compute the situation-to-situation similarity. We also show how DSPF can be further improved by using clustering techniques. Finally, we evaluate DSPF on several contextually-tagged data sets and demonstrate that it outperforms state-of-the-art context-aware approaches.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 50 条
  • [31] CARS: Workshop on Context-Aware Recommender Systems 2022
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 691 - 693
  • [32] Context-aware recommender systems and cultural heritage: a survey
    Mario Casillo
    Francesco Colace
    Dajana Conte
    Marco Lombardi
    Domenico Santaniello
    Carmine Valentino
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3109 - 3127
  • [33] User Modeling Framework for Context-Aware Recommender Systems
    Inzunza, Sergio
    Juarez-Ramirez, Reyes
    Jimenez, Samantha
    RECENT ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2017, 569 : 899 - 908
  • [34] Workshop on Context-Aware Recommender Systems (CARS) 2021
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), 2021, : 813 - 814
  • [35] Preface to the special issue on context-aware recommender systems
    Gediminas Adomavicius
    Dietmar Jannach
    User Modeling and User-Adapted Interaction, 2014, 24 : 1 - 5
  • [36] Mining Contextual Knowledge for Context-Aware Recommender Systems
    Zhang, Wenping
    Lau, Raymond
    Tao, Xiaohui
    2012 NINTH IEEE INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2012, : 356 - 360
  • [37] Context-aware recommender systems and cultural heritage: a survey
    Casillo, Mario
    Colace, Francesco
    Conte, Dajana
    Lombardi, Marco
    Santaniello, Domenico
    Valentino, Carmine
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3109 - 3127
  • [38] Privileged contextual information for context-aware recommender systems
    Sundermann, Camila Vaccari
    Domingues, Marcos Aurelio
    Conrado, Merley da Silva
    Rezende, Solange Oliveira
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 139 - 158
  • [39] Datasets for Context-Aware Recommender Systems: Current Context and Possible Directions
    Ilarri, Sergio
    Trillo-Lado, Raquel
    Hermoso, Ramon
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW), 2018, : 25 - 28
  • [40] A Context Modelling System and Learning Tool for Context-Aware Recommender Systems
    Mettouris, Christos
    Achilleos, Achilleas P.
    Papadopoulos, George Angelos
    SCALING UP LEARNING FOR SUSTAINED IMPACT, 2013, 8095 : 619 - 620