Extremal Inhomogeneous Gibbs States for SOS-Models and Finite-Spin Models on Trees

被引:0
|
作者
Loren Coquille
Christof Külske
Arnaud Le Ny
机构
[1] Université Grenoble Alpes,Fakultät für Mathematik
[2] CNRS,undefined
[3] Institut Fourier,undefined
[4] Ruhr-Universität Bochum,undefined
[5] LAMA UMR CNRS 8050,undefined
[6] UPEC,undefined
[7] Université Paris-Est,undefined
关键词
Gibbs measures; Models on trees; Disordered systems; Gradient interactions; Excess energy; Cluster expansion; Extremal states; Cutsets; 60K35; 82B20; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}-valued p-SOS-models with nearest neighbor interactions of the form |ωv-ωw|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\omega _v-\omega _w|^p$$\end{document}, and finite-spin ferromagnetic models on regular trees. This includes the classical SOS-model, the discrete Gaussian model and the Potts model. We exhibit a family of extremal inhomogeneous (i.e. tree automorphism non-invariant) Gibbs measures arising as low temperature perturbations of ground states (local energy minimizers), which have a sparse enough set of broken bonds together with uniformly bounded increments along them. These low temperature states in general do not possess any symmetries of the tree. This generalises the results of Gandolfo et al. (J. Stat. Phys. 148:999–1005, 2012) about the Ising model, and shows that the latter behaviour is robust. We treat three different types of extensions: non-compact state space gradient models, models without spin-symmetry, and models in small random fields. We give a detailed construction and full proofs of the extremality of the low-temperature states in the set of all Gibbs measures, analysing excess energies relative to the ground states, convergence of low-temperature expansions, and properties of cutsets.
引用
下载
收藏
相关论文
共 50 条
  • [21] Phase Diagram of Horizontally Invariant Gibbs States for Lattice Models
    P. Holický
    R. Kotecký
    M. Zahradník
    Annales Henri Poincaré, 2002, 3 : 203 - 267
  • [22] Phase diagram of horizontally invariant Gibbs states for lattice models
    Holicky, P
    Kotecky, R
    Zahradník, M
    ANNALES HENRI POINCARE, 2002, 3 (02): : 203 - 267
  • [23] Classical limits of euclidean Gibbs states for quantum lattice models
    Albeverio, S
    Kondratiev, Y
    Kozitsky, Y
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (03) : 221 - 233
  • [24] Classical Limits of Euclidean Gibbs States for Quantum Lattice Models
    Sergio Albeverio
    Yuri Kondratiev
    Yuri Kozitsky
    Letters in Mathematical Physics, 1999, 48 : 221 - 233
  • [25] Equivalence of ferromagnetic spin models on trees and random graphs
    Johnston, D. A.
    Plechac, P.
    Journal of Physics A: Mathematical and General, 31 (02):
  • [26] Equivalence of ferromagnetic spin models on trees and random graphs
    Johnston, DA
    Plechac, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 475 - 482
  • [27] Image processing algorithms based on finite-state Gibbs models
    Vasyukov, Vasily N.
    IFOST 2006: 1st International Forum on Strategic Technology, Proceedings: E-VEHICLE TECHNOLOGY, 2006, : 287 - 288
  • [28] Unsupervised learning for finite mixture models via modified gibbs sampling
    Liu, Weifeng
    Han, Chongzhao
    Shi, Yong
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2009, 43 (02): : 15 - 19
  • [29] Inhomogeneous dielectrics: conformal mapping and finite-element models
    Costamagna, Eugenio
    Di Barba, Paolo
    OPEN PHYSICS, 2017, 15 (01): : 839 - 844
  • [30] Ground States and Gibbs Measures for the SOS Model with an External Field and Countable Set of Spin Values on a Cayley Tree
    Muzaffar M. Rahmatullaev
    Bunyod U. Abraev
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5888 - 5897