Extremal Inhomogeneous Gibbs States for SOS-Models and Finite-Spin Models on Trees

被引:0
|
作者
Loren Coquille
Christof Külske
Arnaud Le Ny
机构
[1] Université Grenoble Alpes,Fakultät für Mathematik
[2] CNRS,undefined
[3] Institut Fourier,undefined
[4] Ruhr-Universität Bochum,undefined
[5] LAMA UMR CNRS 8050,undefined
[6] UPEC,undefined
[7] Université Paris-Est,undefined
关键词
Gibbs measures; Models on trees; Disordered systems; Gradient interactions; Excess energy; Cluster expansion; Extremal states; Cutsets; 60K35; 82B20; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}-valued p-SOS-models with nearest neighbor interactions of the form |ωv-ωw|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\omega _v-\omega _w|^p$$\end{document}, and finite-spin ferromagnetic models on regular trees. This includes the classical SOS-model, the discrete Gaussian model and the Potts model. We exhibit a family of extremal inhomogeneous (i.e. tree automorphism non-invariant) Gibbs measures arising as low temperature perturbations of ground states (local energy minimizers), which have a sparse enough set of broken bonds together with uniformly bounded increments along them. These low temperature states in general do not possess any symmetries of the tree. This generalises the results of Gandolfo et al. (J. Stat. Phys. 148:999–1005, 2012) about the Ising model, and shows that the latter behaviour is robust. We treat three different types of extensions: non-compact state space gradient models, models without spin-symmetry, and models in small random fields. We give a detailed construction and full proofs of the extremality of the low-temperature states in the set of all Gibbs measures, analysing excess energies relative to the ground states, convergence of low-temperature expansions, and properties of cutsets.
引用
下载
收藏
相关论文
共 50 条
  • [1] Extremal Inhomogeneous Gibbs States for SOS-Models and Finite-Spin Models on Trees
    Coquille, Loren
    Kuelske, Christof
    Le Ny, Arnaud
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (04)
  • [2] Gibbs measures for SOS models on a Cayley tree
    Rozikov, U. A.
    Suhov, Y. M.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2006, 9 (03) : 471 - 488
  • [3] Gibbs-non-Gibbs properties for evolving Ising models on trees
    van Enter, Aemout C. D.
    Ermolaev, Victor N.
    Iacobelli, Giulio
    Kuelske, Christof
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (03): : 774 - 791
  • [4] Structure of Finite-RSB Asymptotic Gibbs Measures in the Diluted Spin Glass Models
    Panchenko, Dmitry
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (01) : 1 - 42
  • [5] Structure of Finite-RSB Asymptotic Gibbs Measures in the Diluted Spin Glass Models
    Dmitry Panchenko
    Journal of Statistical Physics, 2016, 162 : 1 - 42
  • [6] Penalized composite likelihoods for inhomogeneous Gibbs point process models
    Daniel, Jeffrey
    Horrocks, Julie
    Umphrey, Gary J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 104 - 116
  • [7] MODELS OF EXTREMAL MATTER STATES AND THEIR EXPERIMENTAL TESTING
    KALITKIN, NN
    LEONAS, VB
    RODIONOV, ID
    USPEKHI FIZICHESKIKH NAUK, 1985, 147 (01): : 184 - 187
  • [8] KINETICALLY CONSTRAINED SPIN MODELS ON TREES
    Martinelli, F.
    Toninelli, C.
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (05): : 1967 - 1987
  • [9] Dynamical Gibbs-non-Gibbs transitions in Widom-Rowlinson models on trees
    Bergmann, Sebastian
    Kissel, Sascha
    Kuelske, Christof
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 325 - 344
  • [10] Spin models on finite cyclic groups
    1600, Kluwer Academic Publishers, Dordrecht, Neth (03):