A convergent decomposition method for box-constrained optimization problems

被引:0
|
作者
Andrea Cassioli
Marco Sciandrone
机构
[1] Università degli Studi di Firenze,Dipartimento di Sistemi e Informatica
来源
Optimization Letters | 2009年 / 3卷
关键词
Decomposition methods; Gauss–Southwell method; Global convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we consider the problem of minimizing a continuously differentiable function over a feasible set defined by box constraints. We present a decomposition method based on the solution of a sequence of subproblems. In particular, we state conditions on the rule for selecting the subproblem variables sufficient to ensure the global convergence of the generated sequence without convexity assumptions. The conditions require to select suitable variables (related to the violation of the optimality conditions) to guarantee theoretical convergence properties, and leave the degree of freedom of selecting any other group of variables to accelerate the convergence.
引用
收藏
页码:397 / 409
页数:12
相关论文
共 50 条
  • [1] A convergent decomposition method for box-constrained optimization problems
    Cassioli, Andrea
    Sciandrone, Marco
    [J]. OPTIMIZATION LETTERS, 2009, 3 (03) : 397 - 409
  • [2] Globally and superlinearly convergent algorithms for the solution of box-constrained optimization
    Yang, YF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (12) : 1807 - 1821
  • [3] Fortran subroutines for generating box-constrained optimization problems
    Facchinei, F
    Judice, J
    Soares, J
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (03): : 448 - 450
  • [4] A Limited Memory Gradient Projection Method for Box-Constrained Quadratic Optimization Problems
    Crisci, Serena
    Porta, Federica
    Ruggiero, Valeria
    Zanni, Luca
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 161 - 176
  • [5] Complete Solutions to General Box-Constrained Global Optimization Problems
    Wu, Dan
    Shang, Youlin
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [6] A path following method for box-constrained multiobjective optimization with applications to goal programming problems
    Recchioni, MC
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 58 (01) : 69 - 85
  • [7] A path following method for box-constrained multiobjective optimization with applications to goal programming problems
    Maria Cristina Recchioni
    [J]. Mathematical Methods of Operations Research, 2003, 58 : 69 - 85
  • [8] A box-constrained differentiable penalty method for nonlinear complementarity problems
    Boshi Tian
    Yaohua Hu
    Xiaoqi Yang
    [J]. Journal of Global Optimization, 2015, 62 : 729 - 747
  • [9] Ellipsoidal Approach to Box-Constrained Quadratic Problems
    Pasquale L. de Angelis
    Immanuel M. Bomze
    Gerardo Toraldo
    [J]. Journal of Global Optimization, 2004, 28 : 1 - 15
  • [10] An efficient preconditioning method for state box-constrained optimal control problems
    Axelsson, Owe
    Neytcheva, Maya
    Strom, Anders
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (04) : 185 - 207