Complete Solutions to General Box-Constrained Global Optimization Problems

被引:1
|
作者
Wu, Dan [1 ]
Shang, Youlin [1 ]
机构
[1] Henan Univ Sci & Technol, Dept Math, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
ALPHA-BB; NLPS;
D O I
10.1155/2011/478608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a global optimization method for solving general nonlinear programming problems subjected to box constraints. Regardless of convexity or nonconvexity, by introducing a differential flow on the dual feasible space, a set of complete solutions to the original problem is obtained, and criteria for global optimality and existence of solutions are given. Our theorems improve and generalize recent known results in the canonical duality theory. Applications to a class of constrained optimal control problems are discussed. Particularly, an analytical form of the optimal control is expressed. Some examples are included to illustrate this new approach.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A New Algorithm for Box-Constrained Global Optimization
    S. Fanelli
    [J]. Journal of Optimization Theory and Applications, 2011, 149 : 175 - 196
  • [2] A New Algorithm for Box-Constrained Global Optimization
    Fanelli, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (01) : 175 - 196
  • [3] A deterministic approach to global box-constrained optimization
    Evtushenko, Yury
    Posypkin, Mikhail
    [J]. OPTIMIZATION LETTERS, 2013, 7 (04) : 819 - 829
  • [4] A deterministic approach to global box-constrained optimization
    Yury Evtushenko
    Mikhail Posypkin
    [J]. Optimization Letters, 2013, 7 : 819 - 829
  • [5] A convergent decomposition method for box-constrained optimization problems
    Cassioli, Andrea
    Sciandrone, Marco
    [J]. OPTIMIZATION LETTERS, 2009, 3 (03) : 397 - 409
  • [6] A convergent decomposition method for box-constrained optimization problems
    Andrea Cassioli
    Marco Sciandrone
    [J]. Optimization Letters, 2009, 3 : 397 - 409
  • [7] Fortran subroutines for generating box-constrained optimization problems
    Facchinei, F
    Judice, J
    Soares, J
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (03): : 448 - 450
  • [8] Stopping rules for box-constrained stochastic global optimization
    Lagaris, I. E.
    Tsoulos, I. G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 622 - 632
  • [9] GLOBIE: An algorithm for the deterministic global optimization of box-constrained NLPs
    Kazazakis, Nikolaos
    Adjiman, Claire S.
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON FOUNDATIONS OF COMPUTER-AIDED PROCESS DESIGN, 2014, 34 : 669 - 674
  • [10] Ellipsoidal Approach to Box-Constrained Quadratic Problems
    Pasquale L. de Angelis
    Immanuel M. Bomze
    Gerardo Toraldo
    [J]. Journal of Global Optimization, 2004, 28 : 1 - 15