Oscillating solitons of the driven, damped nonlinear SchrÖdinger equation

被引:0
|
作者
E. V. Zemlyanaya
N. V. Alexeeva
机构
[1] Joint Institute for Nuclear Research,Department of Mathematics and Applied Mathematics
[2] University of Cape Town,undefined
来源
关键词
nonlinear Schrödinger equation; parametric driving; stability; Floquet multiplier; bifurcation of doubled period;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain time-periodic solitons of the parametrically driven, damped nonlinear Schrödinger equation as solutions of the boundary value problem on a two-dimensional domain. We classify the stability and bifurcations of singly and doubly periodic solutions.
引用
收藏
页码:870 / 876
页数:6
相关论文
共 50 条
  • [41] Solitons for the cubic-quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics
    Ping Wang
    Tao Shang
    Li Feng
    Yingjie Du
    Optical and Quantum Electronics, 2014, 46 : 1117 - 1126
  • [42] Chirped optical solitons and stability analysis of the nonlinear Schr?dinger equation with nonlinear chromatic dispersion
    Thilagarajah Mathanaranjan
    Mir Sajjad Hashemi
    Hadi Rezazadeh
    Lanre Akinyemi
    Ahmet Bekir
    Communications in Theoretical Physics, 2023, 75 (08) : 56 - 64
  • [43] Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index
    Kudryashov, Nikolay A.
    Applied Mathematics Letters, 2022, 128
  • [44] Invariant measures for a stochastic nonlinear and damped 2D Schrödinger equation
    Brzezniak, Zdzislaw
    Ferrario, Benedetta
    Zanella, Margherita
    NONLINEARITY, 2024, 37 (01)
  • [45] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [46] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [47] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [48] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [49] A Schrödinger equation with time-oscillating nonlinearity
    Thierry Cazenave
    Márcia Scialom
    Revista Matemática Complutense, 2010, 23 : 321 - 339
  • [50] Formation of solitons with shape changing for a generalized nonlinear Schrödinger equation in an optical fiber
    Muniyappan, A.
    Parasuraman, E.
    Seadawy, Aly R.
    Ramkumar, S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)