Systemic therapy for brain metastases (BM) is quickly moving from conventional cytotoxic chemotherapy toward targeted therapies, that allow a disruption of driver molecular pathways. The discovery of actionable driver mutations has led to the development of an impressive number of tyrosine kinase inhibitors (TKIs), that target the epidermal growth factor receptor (EGFR) mutations, anaplastic-lymphoma-kinase (ALK) rearrangements, and other rare molecular alterations in patients bearing metastatic non-small cell lung cancer (NSCLC) in the brain, with remarkable results in terms of intracranial disease control and overall survival. Moreover, these drugs may delay the use of local therapies, such as stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT). New drugs with higher molecular specificity and ability to cross the CNS barriers (BBB, BTB and blood-CSF) are being developed. Two major issues are related to targeted therapies. First, the emergence of a resistance is a common event, and a deeper understanding of molecular pathways that are involved is critical for the successful development of effective new targeted agents. Second, an early detection of tumor progression is of utmost importance to avoid the prolongation of an ineffective therapy while changing to another drug. In order to monitor over time the treatment to targeted therapies, liquid biopsy, that allows the detection in biofluids of either circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) or exosomes, is increasingly employed in clinical trials: with respect to BM the monitoring of both blood and CSF is necessary. Also, radiomics is being developed to predict the mutational status of the BM on MRI.