The concepts of triangle orthocenters in Minkowski planes

被引:0
|
作者
Gunter Weiss
机构
[1] Technische Universität Dresden,Institut für Geometrie
来源
Journal of Geometry | 2002年 / 74卷
关键词
Key words: Minkowski plane, left and right-orthogonality, orthocenter of a triangle.;
D O I
暂无
中图分类号
学科分类号
摘要
Let (A2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document}) be a Minkowski plane with a centrally symmetric, strictly convex C1-curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document} as the unit circle. Then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document} induces in (A2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document}) a left-orthogonality structure '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \dashv $\end{document}' by setting tangents of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document} (and their parallels) left-orthogonal to the corresponding radii (and their paralles). If a line g is left-orthogonal to another one h, then h is right-orthogonal to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ g, (h \vdash g) $\end{document}. Based on those concepts of orthogonality in (A2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document}) left- and right-altitudes of a triangle are defined and one can discuss the existence of left- or right-orthocentric triangles. In general Minkowski planes these concepts of orthocenters are independent of a third type of a triangle-orthocenter, which is based on a circle-geometric definition due to Asplund and Grünbaum, c.f. [1].¶¶Further results are the following: In every plane A2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document} there exist triplets of directions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \overline{g}_i $\end{document} such that the triangles \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal {T} $\end{document} having sides gi parallel to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \overline{g}_i $\end{document} are left-orthocentric. A plane A2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document} is euclidean, iff each triangle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal {T} $\end{document} is left-orthocentric. Constructing the altitudes of an altitude-triangle of a non (left- or right-)-orthocentric triangle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal {T} $\end{document} starts iteration processes with attractors (resp. repulsors) which can be called ‘limit orthocenters’ to the given triangle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal {T} $\end{document}.
引用
收藏
页码:145 / 156
页数:11
相关论文
共 50 条
  • [21] Triangle transitive translation planes
    Draayer, D. E.
    Johnson, N. L.
    Pomareda, R.
    NOTE DI MATEMATICA, 2006, 26 (01): : 29 - 53
  • [22] Ordered Symmetric Minkowski Planes I
    Karzel, Helmut
    Kosiorek, Jaroslaw
    Matras, Andrzej
    JOURNAL OF GEOMETRY, 2009, 93 (1-2) : 116 - 127
  • [23] ON MINKOWSKI PLANES WITH TRANSITIVE GROUPS OF HOMOTHETIES
    KLEIN, M
    KROLL, HJ
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1994, 64 : 303 - 313
  • [24] Symmetric Minkowski planes ordered by separation
    Karzel H.
    Kosiorek J.
    Matraś A.
    Journal of Geometry, 2010, 98 (1-2) : 115 - 125
  • [25] On the Minkowski planes constructed by Artzy and Groh
    H. -J. Kroll
    S. -G. Taherian
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2006, 76 : 69 - 77
  • [26] PRESENTATION OF GROUP SPACES OF MINKOWSKI PLANES
    SCHRODER, EM
    ARCHIV DER MATHEMATIK, 1970, 21 (03) : 308 - &
  • [27] FINITE MINKOWSKI PLANES OF CHARACTERISTIC 2
    LINGENBERG, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 274 : 299 - 309
  • [28] Reflections in strictly convex Minkowski planes
    Horst Martini
    Margarita Spirova
    Aequationes mathematicae, 2009, 78
  • [29] Modified classical flat Minkowski planes
    Steinke, Gunter F.
    ADVANCES IN GEOMETRY, 2017, 17 (03) : 379 - 396
  • [30] A characterization of constant width in Minkowski planes
    Averkov G.
    Martini H.
    Aequationes mathematicae, 2004, 68 (1-2) : 38 - 45