On solving energy-dependent partitioned eigenvalue problem by genetic algorithm: The case of real symmetric Hamiltonian matrices

被引:0
|
作者
Rahul Sharma
Subbajit Nandy
S. P. Bhattacharyya
机构
[1] Indian Association for the Cultivation of Science,Department of Physical Chemistry
[2] Jadavpur,undefined
[3] Andrew’s High (H.S.) School,undefined
来源
Pramana | 2006年 / 66卷
关键词
Symmetric eigenvalue problem; genetic algorithm; partitioning techniques; energy-dependent partitioning; Löwdin’s method; 02.60.Pn; 02.70.Hm; 03.65.Fd; 03.65. -w; 31.15.Pf;
D O I
暂无
中图分类号
学科分类号
摘要
An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of genetic algorithm. The proposed method is tested with matrices of different sizes (30 × 30 to 1000 × 1000). Comparison is made with Löwdin’s strategy for solving the problem. The relative advantages and disadvantages of the GA-based method are analyzed
引用
收藏
页码:1125 / 1130
页数:5
相关论文
共 50 条
  • [1] On solving energy-dependent partitioned eigenvalue problem by-genetic algorithm: The case of real symmetric Hamiltonian matrices
    Sharma, Rahul
    Nandy, Subbajit
    Bhattacharyya, S. P.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 66 (06): : 1125 - 1130
  • [2] ON SOLVING ENERGY-DEPENDENT PARTITIONED REAL SYMMETRIC MATRIX EIGENVALUE PROBLEM BY A PARALLEL GENETIC ALGORITHM
    Sharma, Rahul
    Nandy, Subhajit
    Bhattacharyya, S. P.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2008, 7 (06): : 1103 - 1120
  • [3] Parallel algorithm for solving the eigenvalue problem of symmetric band Toeplitz matrices
    Luo, Xiaoguang
    Li, Xiaomei
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 16 (01): : 105 - 110
  • [4] Remarks on the inverse problem for an energy-dependent hamiltonian
    Chau Huu-Tai, Pierre
    Ducomet, Bernard
    APPLICABLE ANALYSIS, 2023, 102 (03) : 725 - 738
  • [5] The descent algorithm for solving the symmetric eigenvalue complementarity problem
    Zhu, Lin
    Lei, Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [6] An inverse eigenvalue problem and a matrix approximation problem for symmetric skew-hamiltonian matrices
    Xie, Dongxiu
    Huang, Ningjun
    Zhang, Qin
    NUMERICAL ALGORITHMS, 2007, 46 (01) : 23 - 34
  • [7] An inverse eigenvalue problem and a matrix approximation problem for symmetric skew-hamiltonian matrices
    Dongxiu Xie
    Ningjun Huang
    Qin Zhang
    Numerical Algorithms, 2007, 46 : 23 - 34
  • [8] AN IMPROVED ALGORITHM FOR SOLVING AN INVERSE EIGENVALUE PROBLEM FOR BAND MATRICES
    Akaiwa, Kanae
    Yoshida, Akira
    Kondo, Koichi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 745 - 759
  • [9] GROUP-COORDINATE RELAXATION METHOD FOR SOLVING GENERALIZED EIGENVALUE PROBLEM FOR LARGE REAL-SYMMETRIC MATRICES
    CHEUNG, LM
    BISHOP, DM
    COMPUTER PHYSICS COMMUNICATIONS, 1977, 13 (04) : 247 - 250
  • [10] Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices
    Trench, William F.
    SIAM Journal of Scientific Computing, 1997, 18 (06): : 1722 - 1736